求证: 第2卷 共50分17.过三棱柱ABC―A1B1C1 任意两条棱的中点作直线.其中与平面ABB1A1平行的直线共有 ** 条 查看更多

 

题目列表(包括答案和解析)

(本小题共12分)

在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。

   (I)求证:平面ACC1A1⊥平面BCC1B;

   (II)求直线DA1与平面BCC1B1所成角的大小;

   (III)求二面角A—DC1—C的大小。

 

查看答案和解析>>

(本小题共12分)

在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。

   (I)求证:平面ACC1A1⊥平面BCC1B;

   (II)求直线DA1与平面BCC1B1所成角的大小;

   (III)求二面角A—DC1—C的大小。

 

查看答案和解析>>

(本小题共10分)在直三棱柱中, ,求与侧面所成的角。

 

 

 

 

 

查看答案和解析>>

如图,在直三棱柱中,底面为等腰直角三角形,为棱上一点,且平面平面.

(Ⅰ)求证:点为棱的中点;

(Ⅱ)判断四棱锥的体积是否相等,并证明。

【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,

易知。由此知:从而有又点的中点,所以,所以点为棱的中点.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。

(1)过点点,取的中点,连且相交于,面内的直线。……3分

且相交于,且为等腰三角形,易知。由此知:,从而有共面,又易知,故有从而有又点的中点,所以,所以点为棱的中点.               …6分

(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

 (12分)如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,平面ABC

(Ⅰ)求证:AB1⊥平面A1BD;

(Ⅱ)求二面角A-A1D-B的余弦值;

(Ⅲ)求点C到平面A1BD的距离.

 

查看答案和解析>>

1―5、  CDDCA   6―10、DABAB    11、    12、1,  9

13:因为方程x 2 + mx + 1=0有两个不相等的实根,

所以Δ1=m 2 ? 4>0,  ∴m>2或m < ? 2               

又因为不等式4x 2 +4(m ? 2)x + 1>0的解集为R,

所以Δ2=16(m ? 2) 2? 16<0,   ∴1< m <3            

因为pq为真,pq为假,所以pq为一真一假, 

(1)当p为真q为假时,

(2)当p为假q为真时,    

综上所述得:m的取值范围是

14解:  直线方程为y=-x+4,联立方程,消去y得,.

设A(),B(),得

所以:,

由已知可得+=0,从而16-8p=0,得p=2.

所以抛物线方程为y2=4x,焦点坐标为F(1,0)

15、解(Ⅰ) AC与PB所成角的余弦值为.

 (Ⅱ)N点到AB、AP的距离分别为1,.

16解:   (1); (2)略

17、6        18、①②③⑤         19、B     20、B

21、解:(1)略  (2)

22、解:(1)设双曲线C的渐近线方程为y=kx,则kx-y=0

∵该直线与圆 相切,∴双曲线C的两条渐近线方程为y=±x.

故设双曲线C的方程为.又双曲线C的一个焦点为

∴双曲线C的方程为:.

(2)由.令

∵直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个

不等负实根.

因此,解得..                       

(3). ∵ AB中点为

∴直线l的方程为:. 令x=0,得

,∴,∴.     

 

 

 

 

 

 


同步练习册答案