面积为的菱形. ∠CAA1为锐角.且平面ABB1A1⊥平面AA1C1C且A1B=AB=AC=1(1)求证AA1⊥BC(2)求二面角B-AC-C1的余弦值. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在四棱锥P-ABCD中,侧面PCD是边长为2cm的等边三角形,且与底面垂直,而底面ABCD是面积为2
3
cm2
的菱形,∠ADC是锐角.
(I)求四棱锥P-ABCD的体积;
(II)求证PA⊥CD.

查看答案和解析>>

如图,在四棱锥P-ABCD中,侧面PCD是边长为2cm的等边三角形,且与底面垂直,而底面ABCD是面积为的菱形,∠ADC是锐角.
(I)求四棱锥P-ABCD的体积;
(II)求证PA⊥CD.

查看答案和解析>>

已知函数f(x)=2sinxcosx-2sin2x+1(x∈R).
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若在△ABC中,角A,B,C的对边分别为a,b,c,a=
3
,A为锐角,且f(A+
π
8
)=
2
3
,求△ABC面积S的最大值.

查看答案和解析>>

设函数f(x)=cos(2x+
π
3
)+sin2x

(I)求f(x)的值域和最小正周期;
(II)设A、B、C为△ABC的三内角,它们的对边长分别为a、b、c,若cosC=
2
2
3
,A为锐角,且f(
A
2
)=-
1
4
a+c=2+3
3
,求△ABC的面积.

查看答案和解析>>

已知α为锐角,且tanα=
2
-1
,函数f(x)=2xtan2α+sin(2α+
π
4
)
,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn

查看答案和解析>>

1―5、  CDDCA   6―10、DABAB    11、    12、1,  9

13:因为方程x 2 + mx + 1=0有两个不相等的实根,

所以Δ1=m 2 ? 4>0,  ∴m>2或m < ? 2               

又因为不等式4x 2 +4(m ? 2)x + 1>0的解集为R,

所以Δ2=16(m ? 2) 2? 16<0,   ∴1< m <3            

因为pq为真,pq为假,所以pq为一真一假, 

(1)当p为真q为假时,

(2)当p为假q为真时,    

综上所述得:m的取值范围是

14解:  直线方程为y=-x+4,联立方程,消去y得,.

设A(),B(),得

所以:,

由已知可得+=0,从而16-8p=0,得p=2.

所以抛物线方程为y2=4x,焦点坐标为F(1,0)

15、解(Ⅰ) AC与PB所成角的余弦值为.

 (Ⅱ)N点到AB、AP的距离分别为1,.

16解:   (1); (2)略

17、6        18、①②③⑤         19、B     20、B

21、解:(1)略  (2)

22、解:(1)设双曲线C的渐近线方程为y=kx,则kx-y=0

∵该直线与圆 相切,∴双曲线C的两条渐近线方程为y=±x.

故设双曲线C的方程为.又双曲线C的一个焦点为

∴双曲线C的方程为:.

(2)由.令

∵直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个

不等负实根.

因此,解得..                       

(3). ∵ AB中点为

∴直线l的方程为:. 令x=0,得

,∴,∴.     

 

 

 

 

 

 


同步练习册答案