题目列表(包括答案和解析)
已知函数
的图象经过A(0,1),且在该点处的切线与直线
平行.
(1)求b与c的值;
(2)求
上的最大值与最小值分别为M(a),N(a),求F(a)=M(a)-N(a)的表达式.
(3)在)(2)的条件下,当a的区间
上变化时,证明:![]()
(2006
北京朝阳模拟)已知函数(1)
若f(x)在区间[-1,1]上的最大值为1,最小值为-2,求m、n的值;(2)
在(1)条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;(3)
设函数f(x)的导函数为g(x),函数某专卖店销售一新款服装,日销售量(单位为件)f(n)与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和-3的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.
(1)求f(n)的表达式,及前m天的销售总数;
(2)按以往经验,当该专卖店销售某款服装的总数超过 400件时,市面上会流行该款服装,而日销售量连续下降并低于30件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过10天?请说明理由.
1―5、 CDDCA 6―10、DABAB 11、
12、1, 9
13解:因为方程x 2 + mx + 1=0有两个不相等的实根,
所以Δ1=m 2 ? 4>0, ∴m>2或m < ? 2
又因为不等式4x 2 +4(m ? 2)x + 1>0的解集为R,
所以Δ2=16(m ? 2) 2? 16<0, ∴1< m <3
因为p或q为真,p且q为假,所以p与q为一真一假,
(1)当p为真q为假时,
(2)当p为假q为真时,
综上所述得:m的取值范围是
或
14、解:
直线方程为y=-x+4,联立方程
,消去y得,
.
设A(
),B(
),得
所以:
,
由已知
可得
+
=0,从而16-8p=0,得p=2.
所以抛物线方程为y2=4x,焦点坐标为F(1,0)
15、解(Ⅰ) AC与PB所成角的余弦值为
.
(Ⅱ)N点到AB、AP的距离分别为1,
.
16解: (1)
; (2)略
17、6 18、①②③⑤ 19、B 20、B
21、解:(1)略 (2)
22、解:(1)设双曲线C的渐近线方程为y=kx,则kx-y=0
∵该直线与圆
相切,∴双曲线C的两条渐近线方程为y=±x.
故设双曲线C的方程为
.又双曲线C的一个焦点为
,
∴
,
∴双曲线C的方程为:
.
(2)由
得
.令
∵直线与双曲线左支交于两点,等价于方程f(x)=0在
上有两个
不等负实根.
因此
,解得
..
(3). ∵ AB中点为
,
∴直线l的方程为:
.
令x=0,得
.
∵
,∴
,∴
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com