(1) 求的解析式, 查看更多

 

题目列表(包括答案和解析)





.
(Ⅰ)求的解析式;
(Ⅱ)若数列满足:),且, 求数列的通项;
(Ⅲ)求证:

查看答案和解析>>





(1)求的解析式;
(2) 当时,不等式:恒成立,求实数的范围.
(3)设,求的最大值;

查看答案和解析>>



(1)求的解析式;
(2)若对于实数,不等式恒成立,求t
的取值范围.

查看答案和解析>>

求解析式:
(1)已知f(
1
x
)=
x
1-x2
,求f(x); 
(2)已知二次函数f(x)满足f(0)=0且f(x+1)=f(x)+x+1,求f(x)的表达式.

查看答案和解析>>


(1)求时,的解析式;
(2)若关于的方程有三个不同的解,求a的取值范围。
(3)是否存在正数、,当时,,且的值域为.若存在,求出a、b 的值;若不存在,说明理由

查看答案和解析>>

一、选择题 CAADD    ABDAB   CB

二、填空题               

三、解答题

     

               

               

               

       的周期为,最大值为

      

          得

         ∴的单调减区间为

事件表示甲以获胜;表示乙以获胜,互斥,

    ∴

  

事件表示甲以获胜;表示甲以获胜, 互斥,

   延长交于,则

      连结,并延长交延长线于,则

      在中,为中位线,

      又

       ∴

      中,

,又

,∴

为平面与平面所成二面角的平面角。

∴所求二面角大小为

    知,同理

    又

构成以为首项,以为公比的等比数列。

,即

     

     

     

     

,且的图象经过点

     ∴的两根.

     ∴

   ∴

要使对,不等式恒成立,

只需即可.

上单调递减,在上单调递增,在上单调递减.

解得,即为的取值范围.

由题意知,椭圆的焦点,顶点

     ∴双曲线

     ∴的方程为:

联立,得

,即

由①②得的范围为

 

 

 

 


同步练习册答案