10.经问卷调查.某班学生对摄影分别执“喜欢 .“不喜欢 和“一般 三种态度.其中执“一般 态度的比“不喜欢 态度的多人.按分层抽样方法从全班选出5位“喜欢 摄影的同学.位“不喜欢 摄影的同学和位执“一般 态度的同学座谈摄影.那么全班学生中“喜欢 摄影的人数是 人. 查看更多

 

题目列表(包括答案和解析)

8、经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多
3
人.

查看答案和解析>>

经问卷调查,某班学生对摄影分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的学生比持“不喜欢”的学生多12人,按分层抽样的方法(抽样过程中不需要剔除个体)从全班选出部分学生进行关于摄影的座谈.若抽样得出的9位同学中有5位持“喜欢”态度的同学,1位持“不喜欢”态度的同学和3位持“一般”态度的同学,则全班持“喜欢”态度的同学人数为
30
30

查看答案和解析>>

经问卷调查,某班学生对摄影分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比“不喜欢”态度的多12人。按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位持“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多        人。

   

查看答案和解析>>

13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多        人.

查看答案和解析>>

经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的位“喜欢”摄影的同学、位“不喜欢”摄影的同学和位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多        人。

查看答案和解析>>

一、选择题(每小题5分,共40分)

1.D    2.B    3.B    4.B    5.C     6.D    7.C     8.A

解:5.C  ,相切时的斜率为

6.D 

7.C  

       

8.A  原方程可化为[(3x+y)2009+(3x+y)]+(x2009+x)=0,设函数f(x)=x2009+x,

显然该函数为奇函数,且在R上是增函数,则原方程为f(3x+y)+f(x)=0,

即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0

二、填空题(每小题5分,共30分)

9.

10.  位执“一般”对应位“不喜欢”,即“一般”是“不喜欢”的倍,而他们的差为 人,即“一般”有人,“不喜欢”的有人,且“喜欢”是“不喜欢”的5倍,即人.

11.-192

12.;根据题中的信息,可以把左边的式子归纳为从个球(n个白球,k个黑球中取出m个球,可分为:没有黑球,一个黑球,……,k个黑球等类,故有种取法.

13.5;    14、

15.16; 由可化为xy =8+x+y,  x,y均为正实数

 xy =8+x+y

(当且仅当x=y等号成立)即xy-2-8可解得

即xy16故xy的最小值为16.

三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)。

16、(本题满分12分)

解:Ⅰ)在中,

cosA=,又A是的内角,∴A=                  …………6分

(Ⅱ)由正弦定理,又,故  …………8分

即:  故是以为直角的直角三角形     …………10分

又∵A=, ∴B=                                                …………12分

17.(本题满分14分)

解:(I)所求x的可能取值为6、7、8、9                         …………1分

           

…………7分  

(II)

         ∴线路通过信息量的数学期望

          EX        ……13分

答:(I)线路信息畅通的概率是. (II)线路通过信息量的数学期望是……14分

18.(本题满分14分)

解:(Ⅰ)建立如图所示的空间直角坐标系,   ……1分

从而  ……3分

的夹角为,则

 ……6分

 ∴所成角的余弦值为    ……7分

(Ⅱ)由于点在侧面内,故可设点坐标为

 则,                         ……9分

可得,

 

 ∴                             ……13分

∴在侧面内所求点的坐标为   ………14分

(其它解法参照给分)

19.(本小题满分14分)

解:(1)由已知得 化简得         …………2分

    即有唯一解

     所以△ 即    ……5分

消去

解得                          ……7分

   (2)

                         ……9分

                              ……10分

上为单调函数,则上恒有成立。……12分

的图象是开口向下的抛物线,所以△=122+24(-2-2m)≤0,

解得   即所求的范围是[2,+            ……14分

20.(本小题满分14分)

解:(1)由已知    公差  ……1分

                       ……2分

                …………4分

由已知           ……5分  所以公比

             ………7分

 (2)设

                                 ………8分

所以当时,是增函数。                           ………10分

,所以当,                   ………12分

,                              ………13分

所以不存在,使。                           ………14分

21.(14分)解:(1)设C(x,y),∵M点是ΔABC的重心,∴M(,).

又||=||且向量共线,∴N在边AB的中垂线上,∴N(0,).

而||=||,∴=,   即x2 =a2. ……6分

(2)设E(x1,y1),F(x2,y2),由题意知直线L斜率存在,可设L方程为y=kx+a,…7分

代入x2 =a2得 (3-k2)x2-2akx-4a2=0

∴Δ=4a2k2+16a2(3-k2)>0,即k2<4.∴k2-3<1,

>4或<0.                     ……9分

而x1,x2是方程的两根,∴x1+x2=,x1x2=.            ……10分

?=(x1,y1-a)?(x2,y2-a)= x1x2+kx1?kx2=(1+k2) x1x2=

=4a2(1+)∈(-∞,4a2)∪(20a2,+∞).

?的取值范围为(-∞,4a2)∪(20a2,+∞).               ……14分