③命题“ 是真命题, ④命题“ 是假命题其中正确的是. A.②④ B.②③ C.③④ D.①②③ 查看更多

 

题目列表(包括答案和解析)

①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
②若P且Q为假命题,则P、Q均为假命题;
③在△ABC中,sinA>sinB的充要条件是A>B;
④不等式的解集为|x|+|x-1|>a的解集为R,则a≤1;
⑤点(x,y)在映射f作用下的象是(2xlo
g
y
1
2
),则在f的作用下,点(1,-1)的原象是(0,2).
其中真命题的是
 
(写出所有真命题的编号)

查看答案和解析>>

命题p:(t-1)2≥|a-b|,其中a,b满足条件:五个数18,20,22,a,b的平均数是20,标准差是
2

命题q:m≤t≤n,其中m,n满足条件:点M在椭圆
x2
4
+y2=1
上,定点A(1,0),m、n分别为线段AM长的最小值和最大值.
若命题“p或q”为真且命题“p且q”为假,求实数t的取值范围.

查看答案和解析>>

命题p:?α∈R,sin(π-α)=cosα;命题q:函数y=lg(
x2+1
+x)
为奇函数.
现有如下结论:
①p是假命题;  ②¬p是真命题;  ③p∧q是假命题;  ④¬p∨q是真命题.
其中结论说法错误的序号为
①②③
①②③

查看答案和解析>>

命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则对复合命题的下述判断:①pq为真;②pq为假;③pq为真;④pq为假;⑤非p为真;⑥非q为假.其中判断正确的序号是________.(填上你认为正确的所有序号)

查看答案和解析>>

.命题则对复合命题的下述判断:①p或q为真;②p或

q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中判断正确的序号是        (填上你认为正确的所有序号).

 

查看答案和解析>>

一、选择题:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

20080522

 

二、填空题:

13.13   14.   15.       16.②③

三、解答题:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)当f(x)取最大值时, sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合为{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :当时,,…………………………………………1分

时,.

……………………………………………………………………………………3分

是等差数列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比数列. ………………………11分

所以数列的前项和.………………………12分

19.解(1)∵函数的图象的对称轴为

要使在区间上为增函数,

当且仅当>0且……………………2分

=1则=-1,

=2则=-1,1

=3则=-1,1,;………………4分

∴事件包含基本事件的个数是1+2+2=5

∴所求事件的概率为………………6分

(2)由(1)知当且仅当>0时,

函数上为增函数,

依条件可知试验的全部结果所构成的区域为

构成所求事件的区域为三角形部分。………………8分

………………10分

∴所求事件的概率为………………12分

20解:(1):作,连

的中点,连,

则有……………………………4分

…………………………6分

(2)设为所求的点,作,连.则………7分

就是与面所成的角,则.……8分

,易得

……………………………………10分

解得………11分

故线段上存在点,且时,与面角. …………12分

 

21.解(1)由

    

过点(2,)的直线方程为,即

   (2)由

在其定义域(0,+)上单调递增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

综上k的取值范围为………………12分

22.解:(1)由题意椭圆的离心率

∴椭圆方程为………………3分

又点(1,)在椭圆上,∴=1

∴椭圆的方程为………………6分

   (2)若直线斜率不存在,显然不合题意;

则直线l的斜率存在。……………………7分

设直线,直线l和椭交于

依题意:………………………………9分

由韦达定理可知:………………10分

从而………………13分

求得符合

故所求直线MN的方程为:………………14分