③若且.则,④若且.则,其中正确命题的序号是 .(把你认为正确命题的序号都填上) 查看更多

 

题目列表(包括答案和解析)

若a,b是任意非零的常数,对于函数y=f(x)有以下5个命题:
①f(x)是T=2a的周期函数的充要条件是f(x+a)=f(x-a);
②f(x)是T=2a的周期函数的充要条件是f(x+a)=-f(x);
③若f(x)是奇函数且是T=2a的周期函数,则f(x)的图形关于直线x=
a
2
对称;
④若f(x)关于直线x=
a
2
对称,且f(x+a)=-f(x),则f(x)是奇函数;
⑤若f(x)关于点(a,0)对称,关于直线x=b对称,则f(x)是T=4(a-b)的周期函数.
其中正确命题的序号为
①④⑤
①④⑤

查看答案和解析>>

下列命题中正确的是(  )
①若数列{an}是等差数列,且am+an=as+at(m、n、s、t∈N*),则m+n=s+t;
②若Sn是等差数列{an}的前n项的和,则Sn,S2n-Sn,S3n-S2n成等差数列;
③若Sn是等比数列{an}的前n项的和,则Sn,S2n-Sn,S3n-S2n成等比数列;
④若Sn是等比数列{an}的前n项的和,且Sn=Aqn+B;(其中A、B是非零常数,n∈N*),则A+B为零.

查看答案和解析>>

下列命题中,其中正确命题的个数为(  )
(1)PA⊥矩形ABCD所在平面,则P,B两点间的距离等于P到BC的距离;
(2)若a∥b,a?α,b?α,则a与b的距离等于a与α的距离;
(3)直线a,b是异面直线,a?α,b∥α则a,b之间的距离等于b与α之间的距离;
(4)直线a,b是异面直线,a?α,b?β,且α∥β,则a,b之间的距离等于α与β之间的距离.

查看答案和解析>>

下列选项中正确的是(   )

A.若,则

B.在数列中,“”是“数列为递增数列”的必要非充分条件;

C.命题“所有素数都是奇数”的否定为“所有素数都是偶数”;

D.若命题为真命题,则其否命题为假命题;

 

查看答案和解析>>

下列选项中正确的是(   )

A.若,则
B.在数列中,“”是“数列为递增数列”的必要非充分条件;
C.命题“所有素数都是奇数”的否定为“所有素数都是偶数”;
D.若命题为真命题,则其否命题为假命题;

查看答案和解析>>

一、选择题:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

20080522

 

二、填空题:

13.13   14.   15.       16.②③

三、解答题:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)当f(x)取最大值时, sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合为{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :当时,,…………………………………………1分

时,.

……………………………………………………………………………………3分

是等差数列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比数列. ………………………11分

所以数列的前项和.………………………12分

19.解(1)∵函数的图象的对称轴为

要使在区间上为增函数,

当且仅当>0且……………………2分

=1则=-1,

=2则=-1,1

=3则=-1,1,;………………4分

∴事件包含基本事件的个数是1+2+2=5

∴所求事件的概率为………………6分

(2)由(1)知当且仅当>0时,

函数上为增函数,

依条件可知试验的全部结果所构成的区域为

构成所求事件的区域为三角形部分。………………8分

………………10分

∴所求事件的概率为………………12分

20解:(1):作,连

的中点,连,

则有……………………………4分

…………………………6分

(2)设为所求的点,作,连.则………7分

就是与面所成的角,则.……8分

,易得

……………………………………10分

解得………11分

故线段上存在点,且时,与面角. …………12分

 

21.解(1)由

    

过点(2,)的直线方程为,即

   (2)由

在其定义域(0,+)上单调递增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

综上k的取值范围为………………12分

22.解:(1)由题意椭圆的离心率

∴椭圆方程为………………3分

又点(1,)在椭圆上,∴=1

∴椭圆的方程为………………6分

   (2)若直线斜率不存在,显然不合题意;

则直线l的斜率存在。……………………7分

设直线,直线l和椭交于

依题意:………………………………9分

由韦达定理可知:………………10分

从而………………13分

求得符合

故所求直线MN的方程为:………………14分