22.设椭圆过点分别为椭圆C的左.右两个焦点.且离心率 (1)求椭圆C的方程, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

设椭圆的左焦点为F,O为坐标原点,已知椭圆中心关于直线对称点恰好落在椭圆的左准线上。

   (1)求过O、F并且与椭圆右准线l相切的圆的方程;

 
   (2)设过点F且不与坐标轴垂直的直线交椭圆于M、N两点,线段MN的中垂线与y轴交于点A,求点A纵坐标的取值范围。

查看答案和解析>>

(本小题满分12分)设椭圆的左右焦点分别为,离心率,过分别作直线,且分别交直线两点。

(Ⅰ)若,求 椭圆的方程;

(Ⅱ)当取最小值时,试探究

的关系,并证明之.

查看答案和解析>>

(本小题满分12分)

设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且

(1)求椭圆的离心率;

(2)若过三点的圆恰好与直线相切,求椭圆

方程;

(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于

点,在轴上是否存在点使得以为邻边的平行四边形是菱形,

如果存在,求出的取值范围,如果不存在,说明理由.

 

查看答案和解析>>

(本小题满分12分)

设椭圆的离心率,右焦点到直线的距离为坐标原点。

(I)求椭圆的方程;

(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.

 

查看答案和解析>>

(本小题满分12分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.

(1)求椭圆的离心率;

(2)若过三点的圆恰好与直线相切,求椭圆的方程;

(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。

 

 

 

查看答案和解析>>

一、选择题:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

20080522

 

二、填空题:

13.13   14.   15.       16.②③

三、解答题:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)当f(x)取最大值时, sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合为{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :当时,,…………………………………………1分

时,.

……………………………………………………………………………………3分

是等差数列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比数列. ………………………11分

所以数列的前项和.………………………12分

19.解(1)∵函数的图象的对称轴为

要使在区间上为增函数,

当且仅当>0且……………………2分

=1则=-1,

=2则=-1,1

=3则=-1,1,;………………4分

∴事件包含基本事件的个数是1+2+2=5

∴所求事件的概率为………………6分

(2)由(1)知当且仅当>0时,

函数上为增函数,

依条件可知试验的全部结果所构成的区域为

构成所求事件的区域为三角形部分。………………8分

………………10分

∴所求事件的概率为………………12分

20解:(1):作,连

的中点,连,

则有……………………………4分

…………………………6分

(2)设为所求的点,作,连.则………7分

就是与面所成的角,则.……8分

,易得

……………………………………10分

解得………11分

故线段上存在点,且时,与面角. …………12分

 

21.解(1)由

    

过点(2,)的直线方程为,即

   (2)由

在其定义域(0,+)上单调递增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

综上k的取值范围为………………12分

22.解:(1)由题意椭圆的离心率

∴椭圆方程为………………3分

又点(1,)在椭圆上,∴=1

∴椭圆的方程为………………6分

   (2)若直线斜率不存在,显然不合题意;

则直线l的斜率存在。……………………7分

设直线,直线l和椭交于

依题意:………………………………9分

由韦达定理可知:………………10分

从而………………13分

求得符合

故所求直线MN的方程为:………………14分