A.M=N B.MN C.MN D.M∩N= 查看更多

 

题目列表(包括答案和解析)

集合

[  ]

A.M=N
B.MN
C.MN
D.M∩N=

查看答案和解析>>

集合

[  ]

A.M=N
B.MN
C.MN
D.M∩N=

查看答案和解析>>

设集合,则
[     ]
A.M=N
B.MN
C.MN
D.MN

查看答案和解析>>

 

A.(几何证明选讲选做题)

如图,已知AB为圆O的直径,BC切圆O于点BAC交圆O于点PE为线段BC的中点.求证:OPPE

B.(矩阵与变换选做题)

已知MN,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.

C.(坐标系与参数方程选做题)

在平面直角坐标系xOy中,直线m的参数方程为t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsinθ=8cosθ.若直线m与曲线C交于AB两点,求线段AB的长.

D.(不等式选做题)

xy均为正数,且xy,求证:2x≥2y+3.

 

查看答案和解析>>

设集合M =,N =,则 (   )

A.M=N             B.MN            C.MN            D.MN=

 

查看答案和解析>>

一、选择题:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤。

17.解(1)

(2)

1,3,5

18.解:(1)当时.…………2分

,连.

⊥面,知⊥面.…………3分

中点时,中点.

∵△为正三角形,

,∴…………5分

…………6分

   (2)过,连结,则

∴∠为二面角P―AC―B的平面角,

…………8分

    …………10分

……12分

19.解:(1)fx)=-a2x2+c+,……………(1分)

a,∴∈(0,1,………………………………………(2分)

x∈(0,1时,[fx)]max=c+,……………………………(3分)

fx)≤1,则[fx)]max=c+≤1,即c,……………(5分)

∴对任意x∈[0,1],总有fx)≤1成立时,可得c.……(6分)

(2)∵a,∴>0………………………(7分)

又抛物线开口向下,fx)=0的两根在[0,内,…………(8分)

…………(11分)

 

所求实数c的取值范围为

20.解:(1)当时,,不成等差数列。…(1分)

时,  ,

,  ∴,∴ …………(4分)

…………………….5分

(2)………………(6分)

……………………(7分)

………(8分)

,∴……………(10分)

 ∴的最小值为……………….12分

21.解:(1)

……………………2分

是增函数

是减函数……………………4分

……6分

(2)因为,所以

……………………8分

所以的图象在上有公共点,等价于…………10分

解得…………………12分

22解:(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|

∴P点轨迹为以A、F为焦点的椭圆…………………………3分

设方程为

………………………5分

(2)假设存在满足题意的直线l,其斜率存在,设为k,设