(Ⅰ)证明:设 且.则 查看更多

 

题目列表(包括答案和解析)

(理)(1)证明:若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an}是以A为公比的等比数列;

(2)若数列{an}对于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函数f(x)在x=1处的导数.

(文)设数列{an}的前n项和为Sn,已知对于任意的n∈N*,都有Sn=2an-n.

(1)求数列{an}的首项a1及递推关系式:an+1=f(an);

(2)先阅读下面的定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,

则数列{an}是以A为公比的等比数列”.请你在(1)的基础上应用本定理,求数列{an}的通项公式;

(3)求数列{an}的前n项和Sn

查看答案和解析>>

,.

(Ⅰ)证明:

(Ⅱ)求证:在数轴上,介于之间,且距较远;

(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,

说明理由.

 

查看答案和解析>>

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

3、用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为(  )

查看答案和解析>>


同步练习册答案