题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一.选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
B
C
C
B
D
B
C
B
A
二.填空题:
13.
14.存在实数m,关于x的方程x2+x+m = 0没有实根
15.
或
16.
(2)
,记
∴
①
②
①
②:
∴
,即
………12分
19.(1)
………4分
(2)
,
………6分
同理:
………10分
21.(1)∵
∴
∵
对
恒成立,∴
在
上是增函数
又∵
的定义域为R关于原点对称,
∴
是奇函数。……6分
(2)由第(1)题的结论知:
在
上是奇函数又是增函数。
∴
对一切
都成立,
对一切
都成立,应用导数不难求出函数
在
上的最大值为

对一切
都成立

………10分

或
……12分
再由点A在椭圆上,得过A的切线方程为
……8分
同理过B
的切线方程为:
,设两切线的交点坐标为
,则:
,即AB的方程为:
,又
,消去
,得:
直线AB恒过定点
。
…………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com