题目列表(包括答案和解析)
(14分)设A.B为椭圆上
的两个动点。
(1)若A.B满足
,其中O为坐标原点,求证:
为定值;
(本小题满分14分)
![]()
直线
是线段
的垂直平分线.设椭圆E的方程为
.
(1)当
在
上移动时,求直线
斜率
的取值范围;
(2)已知直线
与抛物线
交于A、B两个不同点,
与椭圆
交于P、Q两个不同点,设AB中点为
,OP中点为
,若
,求椭圆
离心率的范围。
设椭圆
(a>b>0)的左、右焦点分别为F1、F2,离心率e=
,右准线为l。.M、N是l上的两个动点,![]()
![]()
(Ⅰ)若
,求a、b的值;
(Ⅱ)证明:当
取最小值时,
与
共线.
已知椭圆
=1的离心率等于
,点P(2,
)在椭圆上。
(1)求椭圆C方程;
(2)设椭圆C的左右顶点分别为A,B,过点Q(2,0)的动直线l与椭圆C相交于M,N两点,是否存在定直线
:x=t,使得直线
与AN的交点G总在直线BM上?若存在,求出一个满足条件的t值;若不存在,说明理由.
一.选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
B
C
C
B
D
B
C
B
A
二.填空题:
13.
14.存在实数m,关于x的方程x2+x+m = 0没有实根
15.
或
16.
(2)
,记
∴
①
②
①
②:
∴
,即
………12分
19.(1)
………4分
(2)
,
………6分
同理:
………10分
21.(1)∵
∴
∵
对
恒成立,∴
在
上是增函数
又∵
的定义域为R关于原点对称,
∴
是奇函数。……6分
(2)由第(1)题的结论知:
在
上是奇函数又是增函数。
∴
对一切
都成立,
对一切
都成立,应用导数不难求出函数
在
上的最大值为

对一切
都成立

………10分

或
……12分
再由点A在椭圆上,得过A的切线方程为
……8分
同理过B
的切线方程为:
,设两切线的交点坐标为
,则:
,即AB的方程为:
,又
,消去
,得:
直线AB恒过定点
。
…………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com