tan(∠A1+∠A2)=-tanθ=.而tanA1=,tanA2=,代入tanθ=-.x2=a2(1-),tanθ===-是的增函数.当y=b时最大.同理当P为短轴顶点时.θ最大.此时tanθ=- 查看更多

 

题目列表(包括答案和解析)

设P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0) 的等差数列,其中O是坐标原点.记Sn=a1+a2+…+an
(1)若C的方程为
x2
9
-y2=1,n=3.点P1(3,0) 及S3=162,求点P3的坐标;(只需写出一个)
(2)若C的方程为y2=2px(p≠0).点P1(0,0),对于给定的自然数n,证明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差数列;
(3)若C的方程为
x2
a2
+
y2
b2
=1
(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值.
符号意义 本试卷所用符号 等同于《实验教材》符号
向量坐标
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>

已知数列{an}满足a1=1,an+1=an+
an2+1
,令an=tanθn(0<θn
π
2
)

求证:(1)数列{θn-
π
2
}
是等比数列.
(2)a1+a2+…+an
(n-1)π
2

查看答案和解析>>

已知方程tan2x一tan x+1=0在x[0,n)( nN*)内所有根的和记为an

(1)写出an的表达式;(不要求严格的证明)

(2)记Sn = a1 + a2 +…+ an求Sn

(3)设bn =(kn一5) ,若对任何nN* 都有anbn,求实数k的取值范围.

 

查看答案和解析>>

设P1x1,y1), P1x2,y2),…, Pnxn,yn)(n≥3,n∈N) 是二次曲线C上的点, 且a1=2, a2=2, …, an=2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.

(1)若C的方程为-y2=1,n=3. 点P1(3,0) 及S3=162, 求点P3的坐标;(只需写出一个)

(2)若C的方程为y2=2px(p≠0). 点P1(0,0), 对于给定的自然数n, 证明:(x1+p)2, (x2+p)2, …,(xn+p)2成等差数列;

(3)若C的方程为a>b>0). 点P1a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值.

符号意义

本试卷所用符号

等同于《实验教材》符号

向量坐标

={x,y}

=(x,y)

正切

tg

tan

查看答案和解析>>

设P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0) 的等差数列,其中O是坐标原点.记Sn=a1+a2+…+an
(1)若C的方程为
x2
9
-y2=1,n=3.点P1(3,0) 及S3=162,求点P3的坐标;(只需写出一个)
(2)若C的方程为y2=2px(p≠0).点P1(0,0),对于给定的自然数n,证明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差数列;
(3)若C的方程为
x2
a2
+
y2
b2
=1
(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值.
符号意义 本试卷所用符号 等同于《实验教材》符号
向量坐标
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>


同步练习册答案