题目列表(包括答案和解析)
| 2 |
| t |
| 2 |
| 2 |
| 1 |
| 2 |
已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.
已知以点C (t,
)(t∈R),t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点.
(1)求证:△OAB的面积为定值;
(2)设直线y= –2x+4与圆C交于点M,N若|OM|=|ON|,求圆C的方程.
(3)若t>0,当圆C的半径最小时,圆C上至少有三个不同的点到直线l:y –
的距离为
,求直线l的斜率k的取值范围.
已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程.
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程.
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com