解:设d是点M到直线l的距离.根据题意.所求轨迹是集合p=, 查看更多

 

题目列表(包括答案和解析)

(2013•嘉定区一模)在平面直角坐标系内,设M(x1,y1)、N(x2,y2)为不同的两点,直线l的方程为ax+by+c=0,δ1=ax1+by1+c,δ2=ax2+by2+c.有四个命题:
①若δ1δ2>0,则点M、N一定在直线l的同侧;
②若δ1δ2<0,则点M、N一定在直线l的两侧;
③若δ12=0,则点M、N一定在直线l的两侧;
④若
δ
2
1
δ
2
2
,则点M到直线l的距离大于点N到直线l的距离.
上述命题中,全部真命题的序号是(  )

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中

(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;

(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵属于特征值-1的一个特征向量为,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

在平面直角坐标系内,设M(x1,y1)、N(x2,y2)为不同的两点,直线l的方程为ax+by+c=0,δ1=ax1+by1+c,δ2=ax2+by2+c.有四个命题:
①若δ1δ2>0,则点M、N一定在直线l的同侧;
②若δ1δ2<0,则点M、N一定在直线l的两侧;
③若δ12=0,则点M、N一定在直线l的两侧;
④若
δ21
δ22
,则点M到直线l的距离大于点N到直线l的距离.
上述命题中,全部真命题的序号是(  )
A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>


同步练习册答案