题目列表(包括答案和解析)
(本小题满分12分)
在平面直角坐标系
中,点
到两定点F1
和F2
的距离之和为
,设点
的轨迹是曲线
.(1)求曲线
的方程; (2)若直线
与曲线
相交于不同两点
、
(
、
不是曲线
和坐标轴的交点),以
为直径的圆过点
,试判断直线
是否经过一定点,若是,求出定点坐标;若不是,说明理由.
(1)如果函数y=x+
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+
和y=x2+
(常数a>0)作出推广,使它们都是你所推广的函数的特例,研究推广后的函数的单调性(只须写出结论,不必证明),并求函数f(x)=(x2+
)n+(
+x)n(n是正整数)在区间[
,2]上的最大值和最小值(可利用你的研究结论).
(18分)已知两定点
,满足条件
的点
的轨迹是曲线
,直线
与曲线
交于
两点,如果
,且曲线
上存在点
,使
.
(1)求曲线
的方程;
(2)求实数
的值;
(3)求实数
的值。
(本小题满分14分) 设圆
,将曲线上每一点的纵坐标压缩到原来的
,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交曲线C于A、B两个不同点.
(1)求曲线
的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com