求出平面与平面的法向量 查看更多

 

题目列表(包括答案和解析)

(08年永定一中二模理)我们把平面内与直线的方向向量垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点且法向量为(点法式)方程为,化简后得.类比以上求法,在空间直角坐标系中,经过点,且法向量为的平面(点法式)方程为_______________(请写出化简后的结果).

查看答案和解析>>

已知四棱锥的底面为直角梯形,底面,且的中点。

(1)证明:面

(2)求所成的角;

(3)求面与面所成二面角的余弦值.

【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.

(2)建立空间直角坐标系,写出向量的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.

(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.

 

查看答案和解析>>

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F为棱BB的中点,M为线段AC的中点.设===.试用向量法解下列问题:
(1)求证:直线MF∥平面ABCD;
(2)求证:直线MF⊥面A1ACC1
(3)是否存在a,使平面AFC1与平面ABCD所成二面角的平面角是30°?如果存在,求出相应的a 值,如果不存在,请说明理由.(提示:可设出两面的交线)

查看答案和解析>>

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F为棱BB的中点,M为线段AC的中点.设
AB
=
e1
AD
=
e2
AA1
=
e3
.试用向量法解下列问题:
(1)求证:直线MF∥平面ABCD;
(2)求证:直线MF⊥面A1ACC1
(3)是否存在a,使平面AFC1与平面ABCD所成二面角的平面角是30°?如果存在,求出相应的a 值,如果不存在,请说明理由.(提示:可设出两面的交线)

查看答案和解析>>


同步练习册答案