[方法二]S=x≤=225.等号成立x=30-xx=15答:长.宽都为15cm时.矩形的面积最大[方法三]S= x=-x2+30x,S/=-2x+30,0<x<15时S/>0,S(x)↑,x>15时S/<0,S(x)↓,∴当x=15时.S极大.在定义域内无其他极值.故S最大 答:长.宽都为15cm时.矩形的面积最大说明1:解应用题一般有四个要点步骤:设――列――解――答说明2:用导数法求函数的最值.与求函数极值方法类似.加一步与几个极值及端点值比较即可.变形1:把长为60cm的铁丝分成两段.各围成一个正方形.怎样分法能使正方形面积和最小? 查看更多

 

题目列表(包括答案和解析)

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为(  )

查看答案和解析>>

(2012•东城区二模)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S=|x|f(x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若cardS,cardT分别为集合元素S,T的元素个数,则下列结论不可能的是(  )

查看答案和解析>>

(2006•宝山区二模)已知集合S={x|y=lg(1-x)},T={x||2x-1|≤3},则S∩T=
{x|-1≤x<1}
{x|-1≤x<1}

查看答案和解析>>

(2012•肇庆二模)设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求y=f(x)在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当s≤x≤t时,函数f(x)=x3+ax2+bx的值域是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案