补充习题: [B组] 1.已知曲线.曲线.直线与都有相切.求直线的方程. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=x3+ax2+bx(a,b∈R),已知曲线y=f(x)在点M(-1,f(-1))处的切线方程是y=4x+3.
(1)求a,b的值;
(2)求函数f(x)在区间[-2,2]的最大值.

查看答案和解析>>

(教材江苏版第62页习题7)(1)已知数列an的通项公式为an=
1
n(n+1)
,则前n项的和
 
;(2)已知数列an的通项公式为an=
1
n
+
n+1
,则前n项的和
 

查看答案和解析>>

(2008•杨浦区二模)(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求数列{pn}的通项公式pn

查看答案和解析>>

(2008•杨浦区二模)(文)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;

(2)已知抛物线C1:y2=2x,经过伸缩变换后得抛物线C2:y2=32x,求伸缩比λ.
(3)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程.

查看答案和解析>>

某企业招聘工作人员,设置A、B、C三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加A组测试,丙、丁两人各自独立参加B组测试.已知甲、乙两人各自通过测试的概率均为
1
3
,丙、丁两人各自通过测试的概率均为
1
2
.戊参加C组测试,C组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.
(Ⅰ)求戊竞聘成功的概率;
(Ⅱ)求参加A组测试通过的人数多于参加B组测试通过的人数的概率;
(Ⅲ)记A、B组测试通过的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>


同步练习册答案