例1.设.求证:(1),(2)说明:(1)实数集中的乘法公式在复数集中仍然成立,(2)复数的混合运算也是乘方.乘除.最后加减.有括号应先处括号里面的. 查看更多

 

题目列表(包括答案和解析)

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=数学公式,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率数学公式,求|A∩B|的取值范围.

查看答案和解析>>


同步练习册答案