(2)等差数列{bn}的各项为正.其前n项和为Tn.且.又成等比数列.求Tn 查看更多

 

题目列表(包括答案和解析)

等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的最小值项.

查看答案和解析>>

等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的最小值项.

查看答案和解析>>

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.设数列{bn}的前n项和为Tn,且bn=
lnnx
a
2
n
,则对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,Tn<(  )
A、1B、2C、3D、4

查看答案和解析>>

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且bn=
lnnx
a
2
n
,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2;
(3)正数数列{cn}中,an+1=(cnn+1(n∈N*),求数列{cn}中的最大项.

查看答案和解析>>

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
1
a
2
n
,数列{bn}的前n项和为Tn,求证:Tn
n
n+1

查看答案和解析>>

 

一、选择题:BCDBA  BBDCB  AC

二、填空题:

13.100   14. 8或-18    15.     16.①②③④ 

三、解答题:

17解:(1)∵   , 且与向量所成角为

∴   ,   ∴  ,            

,∴  ,即。    

(2)由(1)可得:

 ∴  

∵  ,     ∴ 

∴  ,  ∴  当=1时,A=   

∴AB=2,               则                        

18.解:(1)拿每个球的概率均为,两球标号的和是3的倍数有下列4种情况:

(1,2),(1,5),(2,4),(3,6)每种情况的概率为:

所以所求概率为:  

(2)设拿出球的号码是3的倍数的为事件A,则,拿4次至少得2分包括2分和4分两种情况。

     

19.解:(Ⅰ)取BC中点O,连结AO.

为正三角形,

 连结,在正方形中,分别

的中点,

由正方形性质知

又在正方形中,

平面

(Ⅱ)设AB1与A1B交于点,在平面1BD中,

,连结,由(Ⅰ)得

为二面角的平面角.

中,由等面积法可求得

所以二面角的大小为

20.解:(1)由可得

两式相减得

   故{an}是首项为1,公比为3得等比数列  

.

   (2)设{bn}的公差为d,由得,可得,可得

        故可设

        又由题意可得解得

        ∵等差数列{bn}的各项为正,∴,∴ 

 ∴

21.解:  ∴

⑴ 当时,

0

0

极大值

极小值

极小值

化为 ,∴

⑵ 当时,∴

;当

所以上的增函数无极小值

⑶ 当时,

0

0

极大值

极小值

极小值(舍去)

综上                                                 

 

22.解:(1)如图,建立平面直角坐标系,则D(-1,0)弦EF所在的直线方程为

设椭圆方程为

知:  联立方程组  ,

消去x得:

      由题意知:

      由韦达定理知:

消去得:,化简整理得:   解得:   

   即:椭圆的长轴长的取值范围为

(2)若D为椭圆的焦点,则c=1,    由(1)知:  

      椭圆方程为:

 


同步练习册答案