解:(1)S1=a1=a12=1 ∵a1>0∴a1=1 查看更多

 

题目列表(包括答案和解析)

在等差数列{an}中,设S1=a1+a2+…+an,S2=an+1+an+2+…+a2n,S3=a2n+1+a2n+2+…+a3n,则S1,S2,S3关系为(  )

查看答案和解析>>

用数学归纳法证明1+a+a2+…+an+1= (nN*,a≠1)时,在验证n=1成立时,左边应为某学生在证明等差数列前n项和公式时,证法如下:

(1)当n=1时,S1=a1显然成立;

(2)假设当n=k时,公式成立,即Sk=ka1+,

n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d

n=k+1时公式成立.

由(1)(2)知,对nN*时,公式都成立.

以上证明错误的是(  )

A.当n取第一个值1时,证明不对

B.归纳假设的写法不对

C.从n=kn=k+1时的推理中未用归纳假设

D.从n=kn=k+1时的推理有错误

查看答案和解析>>

某学生在证明等差数列前n项和公式时,证法如下:

(1)当n=1时,S1=a1显然成立.

(2)假设n=k时,公式成立,即

Sk=ka1+

当n=k+1时,

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+d

=(k+1)a1+d.

∴n=k+1时公式成立.

∴由(1)(2)可知对n∈N+,公式成立.

以上证明错误的是(    )

A.当n取第一个值1时,证明不对

B.归纳假设写法不对

C.从n=k到n=k+1的推理中未用归纳假设

D.从n=k到n=k+1的推理有错误

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

在等差数列{an}中,设S1=a1+a2+…+an,S2=an+1+an+2+…+a2n,S3=a2n+1+a2n+2+…+a3n,则S1,S2,S3,关系为( )
A.等差数列
B.等比数列
C.等差数列或等比数列
D.都不对

查看答案和解析>>


同步练习册答案