设P1(x1,y1),P2(x2,y2),P为其上一点.P(x,y),设=λ,则.在二阶非零矩阵作用下.点P1.P2.P的分别为(x1/,y1/),(x2/,y2/),(x/,y/) 则 查看更多

 

题目列表(包括答案和解析)

设P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0) 的等差数列,其中O是坐标原点。记Sn=a1+a2+…+an
(1)若C的方程为-y2=1,n=3,点P1(3,0) 及S3=162,求点P3的坐标;(只需写出一个)
(2)若C的方程为y2=2px(p≠0),点P1(0,0),对于给定的自然数n,证明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差数列;
(3)若C的方程为(a>b>0),点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值。

查看答案和解析>>

设点F是抛物线L:y2=4x的焦点,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是抛物线L上的n个不同的点n(n≥3,n∈N*
(1)若抛物线L上三点P1、P2、P3的横坐标之和等于4,求数学公式的值;
(2)当n≥3时,若数学公式,求证:数学公式
(3)若将题设中的抛物线方程y2=4x推广为y2=2px(p>0),请类比小题(2),写出一个一般化的命题及其逆命题,并判断其逆命题的真假.若是真命题,请予以证明;若是假命题,请说明理由.

查看答案和解析>>

设点F是抛物线L:y2=4x的焦点,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是抛物线L上的n个不同的点n(n≥3,n∈N*
(1)若抛物线L上三点P1、P2、P3的横坐标之和等于4,求的值;
(2)当n≥3时,若,求证:
(3)若将题设中的抛物线方程y2=4x推广为y2=2px(p>0),请类比小题(2),写出一个一般化的命题及其逆命题,并判断其逆命题的真假.若是真命题,请予以证明;若是假命题,请说明理由.

查看答案和解析>>

(2012•普陀区一模)设点F是抛物线L:y2=4x的焦点,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是抛物线L上的n个不同的点n(n≥3,n∈N*
(1)若抛物线L上三点P1、P2、P3的横坐标之和等于4,求|
FP1
|+|
FP2
|+|
FP3
|
的值;
(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|   =2n

(3)若将题设中的抛物线方程y2=4x推广为y2=2px(p>0),请类比小题(2),写出一个一般化的命题及其逆命题,并判断其逆命题的真假.若是真命题,请予以证明;若是假命题,请说明理由.

查看答案和解析>>

22.设P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(n≥3,nN)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记Sn=a1+a2+…+an.

 (1)若C的方程为y2=1,n=3,点P1(3,0)及S3=162,求点P3的坐标;(只需写出一个)

 (2)若C的方程为y2=2px(p≠0),点P1(0,0),对于给定的自然数n,证明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差数列;

 (3)若C的方程为+=1(ab>0),点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值.

查看答案和解析>>


同步练习册答案