且.由此解得 查看更多

 

题目列表(包括答案和解析)

已知M=(1+cos2x,1),N=(1,sin2x+a),(x∈R,a∈R,a是常数),且y=(O为坐标原点)

(1)求y关于x的函数关系式y=f(x);

(2)若x∈[0,]时,f(x)的最大值为4,求a的值,并说明此时f(x)的图像可由y=2sin(x+)的图像经过怎样的变换而得到.

查看答案和解析>>

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.

(1)求此抛物线的解析式;

(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.

①求证:PB=PS;

②判断△SBR的形状;

③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.

查看答案和解析>>

已知函数,且,函数的图象经过点,且的图象关于直线对称,将函数的图象向左平移2个单位后得到函数的图象.

(Ⅰ)求函数的解析式;

(Ⅱ)若在区间上的值不小于8,求实数的取值范围.

(III)若函数满足:对任意的(其中),有,称函数的图象是“下凸的”.判断此题中的函数图象在是否是“下凸的”?如果是,给出证明;如果不是,说明理由.

 

查看答案和解析>>

已知函数,且,函数的图象经过点,且的图象关于直线对称,将函数的图象向左平移2个单位后得到函数的图象.
(Ⅰ)求函数的解析式;
(Ⅱ)若在区间上的值不小于8,求实数的取值范围.
(III)若函数满足:对任意的(其中),有,称函数的图象是“下凸的”.判断此题中的函数图象在是否是“下凸的”?如果是,给出证明;如果不是,说明理由.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>


同步练习册答案