两直线的位置关系是: . 查看更多

 

题目列表(包括答案和解析)

(坐标系与参数方程)两直线ρsin(θ+
π
4
)=2011
ρsin(θ-
π
4
)=2012
的位置关系是:
垂直
垂直
(判断垂直或平行或斜交)

查看答案和解析>>

(坐标系与参数方程)两直线的位置关系是:    (判断垂直或平行或斜交)

查看答案和解析>>

(坐标系与参数方程)两直线数学公式数学公式的位置关系是:________(判断垂直或平行或斜交)

查看答案和解析>>

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记(A、B、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使成立.若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

 

1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

16.⑴ ∵ ,……………………………… 2分

又∵ ,∴ 为斜三角形,

,∴.   ……………………………………………………………… 4分

,∴ .  …………………………………………………… 6分

⑵∵,∴ …10分

,∵,∴.…………………………………12分

 

17.(Ⅰ)从4名运动员中任取两名,其靶位号与参赛号相同,有种方法,另2名运动员靶位号与参赛号均不相同的方法有1种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为  ……………………………4

   (Ⅱ)①由表可知,两人各射击一次,都未击中9环的概率为P=(1-0.3)(1-0.32)=0.476至少有一人命中9环的概率为p=1-0.476=0.524………………………8分

   

所以2号射箭运动员的射箭水平高…………………………………12分

 

18.证明:(Ⅰ)在梯形ABCD中,∵

∴四边形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交线为AC,∴平面ACFE…………………6分

(Ⅱ)取EF中点G,EB中点H,连结DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

是二面角B―EF―D的平面角.

在△BDE中

∴在△DGH中,

由余弦定理得即二面角B―EF―D的大小余弦值...14分

 

 

19.解:(1)由椭圆定义可得,可得

  

,,解得   (4分)

(或解:以为直径的圆必与椭圆有交点,即

   (2)由,得

解得    

    此时

当且仅当m=2时, (9分)

(3)由

设A,B两点的坐标分别为,中点Q的坐标为

,两式相减得

     ①

且在椭圆内的部分

又由可知

    ②

①②两式联立可求得点Q的坐标为

点Q必在椭圆内

 又             (14分)

 

20.解:(1)

……………………………4分

(2)

由此猜测

下面证明:当时,由

时,

时,

总之在(-                (10分)

所以当时,在(-1,0)上有唯一实数解,从而

上有唯一实数解。

综上可知,.                 (14分)

 

21.解:(1)令

   令

   由①②得           (6分)

  (2)由(1)可得

n     

   

      ………………14

 

 


同步练习册答案