当斜率为0时.直线 和椭圆交于 查看更多

 

题目列表(包括答案和解析)

椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线l交椭圆于A、B两点,且满足=λ(λ≥2).

(1)若λ为常数,试用直线l的斜率k(k≠0)表示△OAB的面积;

(2)若λ为常数,当△OAB的面积取得最大值时,求椭圆E的方程;

(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴取得最大值?并求此时的椭圆方程.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>O),椭圆C焦距为:2c,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(I)求椭圆c的方程;
(II)设点P(-
a2
c
,0),过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>

已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形.
(1)求椭圆C的方程;
(2)设P(-4,0),过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>

已知椭圆C:数学公式=1(a>b>O),椭圆C焦距为:2c,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(I)求椭圆c的方程;
(II)设点P(-数学公式,0),过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>

已知椭圆C:=1(a>b>O),椭圆C焦距为:2c,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(I)求椭圆c的方程;
(II)设点P(-,0),过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>


同步练习册答案