题目列表(包括答案和解析)
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
已知函数
的反函数。定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”;若函数
与
互为反函数,则称
满足“
积性质”。
(1) 判断函数
是否满足“1和性质”,并说明理由;
![]()
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数
对任何
,满足“
积性质”。求
的表达式。
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,
第3小题满分7分.
已知双曲线
.
(1)求双曲线
的渐近线方程;
(2)已知点
的坐标为
.设
是双曲线
上的点,
是点
关于原点的对称点.
记
.求
的取值范围;
(3)已知点
的坐标分别为
,
为双曲线
上在第一象限内的点.记
为经过原点与点
的直线,
为
截直线
所得线段的长.试将
表示为直线
的斜率
的函数.
(本题满分16分)本题共有2个小题,第
1小题满分6分,第2小题满分10分.
某火山喷发停止后,为测量的需要,设距离喷口中心
米内的圆环面为第
区、
米至
米的圆环面为第
区、……、第
米至
米的圆环面为
第
区,…,现测得第
区火山灰平均每平方米为1000千克、第
区每平方米的平均重量较第
区减少
、第
区较第
区又减少![]()
,以此类推,求:
(1)离火山口1225米处的圆环面平均每平方米火山灰重量(结果精确到1千克)?
(2)第几区内的火
山灰总重量最大?
(本题满分16分)本题共有3个小题
,第1小题满分4分,第2小题满分6分、第3小题满分6分.
设
,常数
,定义运算“
”:
,定义运算“
”:
;对于两点
、
,定义
.
(1)若
,求动点
的轨迹
;
(2)已知直线
与(1)中轨迹
交于
、
两点,若
,试求![]()
的值;
(3)在(2)中条件下,若直线
不过原点且与
轴交于点S,与
轴交于点T,并且与(1)中轨迹
交于不同两点P、Q , 试求
的取值范围.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知函数
的反函数.定义:若对给定的实数
,函数
与
互为反函数,则称
满足“
和性质”;若函数
与
互为反函数,则称
满足“
积性质”.
(1) 判断函数
是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数
对任何
,满足“
积性质”.求
的表达式.
B、C、C、C、B、B、C、B、C、B
11、
12、
13、25 14、①
、②
15、若
,则
;
若
,则
16、证明:(1)连结BD,由EF//BD,BD//B1D1知EF// B1D1,又
,
所以
(2)因为
所以
,且
故平面CAA
18、解:略 反射光线所在的直线方程是
19、解:略 当水池宽为40m时,总造价最低,最低总造价为297600元。
20、解:(1)函数的定义域是R,假设存在实数a,使函数f(x)为奇函数,则有
,解得a=1,故命题成立。
(2)证明略
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com