题目列表(包括答案和解析)
(本题满分为12分)
如图所示:已知
⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作
于E,求证:
.
(本题满分为14分)已知
,(
).(Ⅰ)求出f(x)的极值点,并指出其是极大值点还是极小值点;(Ⅱ)若f(x)在区间
上最大值是5,最小值是-11,求
的解析式.
(本题满分为12分)已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
.
![]()
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段
所成的比为2,求线段AB所在直线的方程.
(本题满分为12分)
已知函数
的图像过坐标原点
,且在点
处的切线的斜率是
.
(1)求实数
的值;
(2)求
在区间
上的最大值;
(3)对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
(本题满分为12分)
已知函数
的图像过坐标原点
,且在点
处的切线
的斜率是
.
(1)求实数
的值; (2)求
在区间
上的最大值;
B、C、C、C、B、B、C、B、C、B
11、
12、
13、25 14、①
、②
15、若
,则
;
若
,则
16、证明:(1)连结BD,由EF//BD,BD//B1D1知EF// B1D1,又
,
所以
(2)因为
所以
,且
故平面CAA
18、解:略 反射光线所在的直线方程是
19、解:略 当水池宽为40m时,总造价最低,最低总造价为297600元。
20、解:(1)函数的定义域是R,假设存在实数a,使函数f(x)为奇函数,则有
,解得a=1,故命题成立。
(2)证明略
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com