如图.P是椭圆=1上的一点.F是椭圆的左焦点.且,||=4,则点P到该椭圆左准线的距离为 A.6 B.4 C.3 D. 查看更多

 

题目列表(包括答案和解析)

如图,P是椭圆=1上的一点,F是椭圆的左焦点,且(),||=4,则点P到该椭圆左准线的距离为

[  ]

A.6

B.4

C.3

D.

查看答案和解析>>

如图,F是椭圆=1(a>b>0)的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BD,B,C,F三点确定的圆M恰好与直线x+y+3=0相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,在x轴上是否存在点N,使得NF恰好为△PNQ的内角平分线,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

如图,F是椭圆=1(a>b>0)的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线x+y+3=0相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,在x轴上是否存在点N,使得NF恰好为△PNQ的内角平分线,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

一、ABBDA  CCDBC  DD

二、13、6;    14、x2+(y-3)2=1;   15、-8;  16、①③

三、17.(1)f(x)=2sin(2x+),T=π  (2)x=或

18.(1);(2)Eξ=1.5       19.(1);(2)arccos;(3)a

20.(1)a1=5;a2=13;a3=33;(2)λ=-1;(3)Sn=n(2n+1+1)

21.(1)略;(2)a∈(-∞,3]    22.(1)y=±x;(2) =1

 

 


同步练习册答案