给出下列四个命题: 查看更多

 

题目列表(包括答案和解析)

给出下列四个命题:
①若a>b>0,c>d>0,那么
a
d
b
c

②已知a、b、m都是正数,并且a<b,则
a+m
b+m
a
b

③若a、b∈R,则a2+b2+5≥2(2a-b);
④2-3x-
4
x
的最大值是2-4
3

⑤原点与点(2,1)在直线y-3x+
1
2
=0
的异侧.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

给出下列四个命题:①命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;②若a,b∈[0,1],则不等式a2+b2
1
4
成立的概率是
π
4
;③函数y=log2(x2-ax+2)在[2,+∞)上恒为正,则实数a的取值范围是(-∞,
5
2
)
.其中真命题的序号是
 
.(填上所有真命题的序号)

查看答案和解析>>

16、给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是
①②
(要求写出所有真命题的序号).

查看答案和解析>>

给出下列四个命题:
①若|x-lgx|<x+|lgx|成立,则x>1;
②抛物线y=2x2的焦点坐标是(
1
2
,0)

③已知|
a
|=|
b
|=2
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
处取得最小值,则f(
2
-x)=-f(x)
;.
其中正确命题的序号是
 

查看答案和解析>>

1、给出下列四个命题:1)若z∈C,则z2≥0; 2)2i-1虚部是2i; 3)若a>b,则a+i>b+i;4)若z1,z2∈C,且z1>z2,则z1,z2为实数;其中正确命题的个数为(  )

查看答案和解析>>

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

C

B

B

C

D

C

A

C

D

A

二、填空题:

13.           14.         15.     2个      16.       

三、解答题:

17.解:(1)

               ……………………3分

又         即 

                            …………………5分

(2)    

又  的充分条件        解得     ………12分

18.由题意知,在甲盒中放一球概率为时,在乙盒中放一球的概率为  …2分

①当时,的概率为               ………4分

②当时,,又,所以的可能取值为0,2,4

(?)当时,有,它的概率为    ………6分

(?)当 时,有

它的概率为

(?)当时,有

     它的概率为

的分布列为

  

0

2

4

P

 

 的数学期望        …………12分

19.解:(1) 连接 于点E,连接DE, ,

 四边形 为矩形, 点E为 的中点,

       平面                 ……………6分

(2)作于F,连接EF

,D为AB中点,

     EF为BE在平面内的射影

为二面角的平面角.

     

二面角的余弦值  ………12分

20.(1)据题意的

                        ………4分

                      ………5分

(2)由(1)得:当时,

    

     当时,为增函数

    当时,为减函数

时,      …………………………8分

时,

时,

时,                   …………………………10分

综上知:当时,总利润最大,最大值为195  ………………12分

21.解:(1)由椭圆定义可得,由可得

,而

解得                                   ……………………4分

(2)由,得

解得(舍去)     此时

当且仅当时,得最小值

此时椭圆方程为         ………………………………………8分

(3)由知点Q是AB的中点

设A,B两点的坐标分别为,中点Q的坐标为

,两式相减得

      AB的中点Q的轨迹为直线

且在椭圆内的部分

又由可知,所以直线NQ的斜率为

方程为

①②两式联立可求得点Q的坐标为

点Q必在椭圆内          解得

              …………………………………12分

22.解:(1)由,得

,有

 

(2)证明:

为递减数列

时,取最大值          

由(1)中知     

综上可知

(3)

欲证:即证

,构造函数

时,

函数内递减

内的最大值为

时,

       

不等式成立

 

 


同步练习册答案