(2)如果..试求出使成立的取值范围, 查看更多

 

题目列表(包括答案和解析)

对于函数,如果存在实数使得,那么称的生成函数.

       (1)下面给出两组函数,是否分别为的生成函数?并说明理由;

第一组:

第二组:

       (2)设,生成函数.若不等式

上有解,求实数的取值范围;

       (3)设,取,生成函数图像的最低点坐标为.若对于任意正实数.试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

定义数列{xn},如果存在常数p,使对任意正整数n,总有(xn+1-p)(xn-p)<0成立,那么我们称数列{xn}为“p-摆动数列”.
(1)设an=2n-1,数学公式,n∈N*,判断{an}、{bn}是否为“p-摆动数列”,并说明理由;
(2)设数列{cn}为“p-摆动数列”,c1>p,求证:对任意正整数m,n∈N*,总有c2n<c2m-1成立;
(3)设数列{dn}的前n项和为Sn,且数学公式,试问:数列{dn}是否为“p-摆动数列”,若是,求出p的取值范围;若不是,说明理由.

查看答案和解析>>

定义数列{xn},如果存在常数p,使对任意正整数n,总有(xn+1-p)(xn-p)<0成立,那么我们称数列{xn}为“p-摆动数列”.
(1)设an=2n-1,,n∈N*,判断{an}、{bn}是否为“p-摆动数列”,并说明理由;
(2)设数列{cn}为“p-摆动数列”,c1>p,求证:对任意正整数m,n∈N*,总有c2n<c2m-1成立;
(3)设数列{dn}的前n项和为Sn,且,试问:数列{dn}是否为“p-摆动数列”,若是,求出p的取值范围;若不是,说明理由.

查看答案和解析>>

已知函数,若存在使得恒成立,则称  是

一个“下界函数” .

(I)如果函数(t为实数)为的一个“下界函数”,

求t的取值范围;

(II)设函数,试问函数是否存在零点,若存在,求出零点个数;

若不存在,请说明理由.

 

查看答案和解析>>

已知函数,若存在使得恒成立,则称  是
一个“下界函数” .
(I)如果函数(t为实数)为的一个“下界函数”,
求t的取值范围;
(II)设函数,试问函数是否存在零点,若存在,求出零点个数;
若不存在,请说明理由.

查看答案和解析>>

一、             填空题(48分)

14 2、(理)20(文) 3  4  5  67、(理)(文)4    86  9 10  11 12

二、             选择题(16分)

13B    14B   15C   16A

三、             解答题(86分)

17、(12分)(1,则……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一条侧棱垂直于底面的四棱锥

 

 

 

 

…………………………………………………………6分)

(注:评分注意实线、虚线;垂直关系;长度比例等)

2)由题意,,则

需要3个这样的几何体可以拼成一个棱长为6的正方体12分)

19、(14分)

(1)抛物线的焦点为(1,0……………………………………………………2分)

设椭圆方程为,则

∴椭圆方程为……………………………………………6分)

(2)设,则

  ………………8分)

①     时,,即时,

②     时,,即时,

综上,……………………………………14分)

(注:也可设解答,参照以上解答相应评分)

20、(14分)

1)设当天的旅游收入为L,由

……………………………(2分)

,知…………………………………………(4分)

即当天的旅游收入是20万到60万。……………………………………………(7分)

(2)则每天的旅游收入上缴税收后不低于220000

  )得

  )得

………………………………………………………………………(11分)

代入可得

即每天游客应不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,对任意复数,有

证明:设

…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)    

时,

对于时,,命题成立。………………14分)

以下用数学归纳法证明,且时,都有成立

假设时命题成立,即

那么时,命题也成立。

存在满足条件的区间………………………………18分)

 


同步练习册答案