(3)是否存在区间.使对于区间内的任意实数.只要.且时.都有恒成立? 查看更多

 

题目列表(包括答案和解析)

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函数,求m和n的值.

查看答案和解析>>

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:g′(
x1+x2
2
)
>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=
1
3
λx3-
1
2
λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:数学公式>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=数学公式λx3-数学公式λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

一、             填空题(48分)

14 2、(理)20(文) 3  4  5  67、(理)(文)4    86  9 10  11 12

二、             选择题(16分)

13B    14B   15C   16A

三、             解答题(86分)

17、(12分)(1,则……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一条侧棱垂直于底面的四棱锥

 

 

 

 

…………………………………………………………6分)

(注:评分注意实线、虚线;垂直关系;长度比例等)

2)由题意,,则

需要3个这样的几何体可以拼成一个棱长为6的正方体12分)

19、(14分)

(1)抛物线的焦点为(1,0……………………………………………………2分)

设椭圆方程为,则

∴椭圆方程为……………………………………………6分)

(2)设,则

  ………………8分)

①     时,,即时,

②     时,,即时,

综上,……………………………………14分)

(注:也可设解答,参照以上解答相应评分)

20、(14分)

1)设当天的旅游收入为L,由

……………………………(2分)

,知…………………………………………(4分)

即当天的旅游收入是20万到60万。……………………………………………(7分)

(2)则每天的旅游收入上缴税收后不低于220000

  )得

  )得

………………………………………………………………………(11分)

代入可得

即每天游客应不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,对任意复数,有

证明:设

…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)    

时,

对于时,,命题成立。………………14分)

以下用数学归纳法证明,且时,都有成立

假设时命题成立,即

那么时,命题也成立。

存在满足条件的区间………………………………18分)

 


同步练习册答案