③函数有且只有一个实数根, 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=-cos2x-4t•sin
x
2
cos
x
2
+2t2-6t+2(x∈R)

(1)当t=1时,求f(x)的最小值;
(2)若t∈R,将f(x)的最小值记为g(t),求g(t)的表达式;
(3)当-1≤t≤1时,关于t的方程g(t)=kt有且只有一个实根,求实数k的取值范围.

查看答案和解析>>

设函数f(x)=数学公式(a,b为常数,a≠0),若f(1)=数学公式,且f(x)=x只有一个实数根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足关系式:an=f(an-1)(n∈N且n≥2),又数学公式,证明数列{数学公式}是等差数列并求{an}的通项公式.

查看答案和解析>>

设函数f(x)=x3+2ax2+bx+a的导数为f'(x),若函数y=f'(x)的图象关于直线数学公式对称,且函数y=f'(x)有最小值数学公式
(Ⅰ)求函数y=f(x)的极值;
(Ⅱ)已知函数g(x)=x2-14x+m,若方程f(x)+g(x)=0只有一个实根,求实数m的取值范围.

查看答案和解析>>

设函数数学公式
(1)当t=1时,求f(x)的最小值;
(2)若t∈R,将f(x)的最小值记为g(t),求g(t)的表达式;
(3)当-1≤t≤1时,关于t的方程g(t)=kt有且只有一个实根,求实数k的取值范围.

查看答案和解析>>

设函数f(x)=x3+2ax2+bx+a的导数为f '(x),若函数y=f '(x)的图像关于直线x=对称,且函数y=f '(x)有最小值
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知函数g(x)=x2-14x+m,若方程f(x)+g(x)=0只有一个实根,求实数的m取值范围。

查看答案和解析>>

一、选择题(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空题(4分x 4=16分)

13.80  14.32  15.  16.①③

三、解答题(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期为 …………………6分

(2)∵成等比数列   ∴  又

  ……………………………………4分

又∵     ∴       ……………………………………………………10分

  ……………………………………12分

18.解:(1)设公差成等比数列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

………………………………………………6分

(2) ∵               ………………………………………………7分

…①      …………8分

 …………②       …………9分

①-②得:

            

                ………………………………………………12分

19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,

                ……………………………………………………4分

(2)设符合题设条件,抽取次数恰为3的事件记为B,则

        ………………………………………………12分

20.解:(1)连结    为正△ …1分

                  

                                       3分

          

 

即点的位置在线段的四等分点且靠近处  ………………………………………6分

(2)过,连

由(1)知(三垂线定理)

为二面角的平面角……9分

   

   

中,

中,

∴二面角的大小为     ………………………………………12分

(说明:若用空间向量解,请参照给分)

21.解:(1) ……2分

①当时,内是增函数,故无最小值………………………3分

②当时,

 

 

 

 

处取得极小值    ………………………5分

   

由                     解得:  ∴ …………6分

(2)由(1)知在区间上均为增函数

,故要在为增函数

                  

必须:                或                    ………………………………………10分

                 

  ∴实数的取值范围是:…………………12分

22.解:(1)如图,设为椭圆的下焦点,连结

…3分

  ∴ ………4分

的离心率为

 …………………………………………………………6分

(2)∵,∴抛物线方程为:设点

点处抛物线的切线斜率 ……………………………………………………8分

则切线方程为:……………………………………………………9分

又∵过点  ∴  ∴  ∴

代入椭圆方程得:    ……………………………………………………11分

  ………………13分

                  

当且仅当                 即           上式取等号

                    

∴此时椭圆的方程为:       ………………………………………………14分

 

 

 

 


同步练习册答案