的交点分别为.如图所示. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,A,B为两个顶点,已知椭圆C上的点到F1,F2两点的距离之和为4且b=
3

(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P,Q两点,求△F1PQ的面积.

查看答案和解析>>

精英家教网如图所示,已知圆E:x2+(y-1)2=4交x轴分别于A,B两点,交y轴的负半轴于点M,过点M作圆E的弦MN.
(1)若弦MN所在直线的斜率为2,求弦MN的长;
(2)若弦MN的中点恰好落在x轴上,求弦MN所在直线的方程;
(3)设弦MN上一点P(不含端点)满足PA,PO,PB成等比数列(其中O为坐标原点),试探求
PA
PB
的取值范围.

查看答案和解析>>

精英家教网如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两个端点为A、B.已知|
OB
|
|
F1B
|
|F1F2
|
成等比数列,|
F1B
|
-
|F1F2
|
=2,与x轴不垂直的直线l与C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1•k2=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)求证直线l与y轴相交于定点,并求出定点坐标;
(Ⅲ)当弦MN的中点P落在四边形F1AF2B内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>

精英家教网如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)
到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.

查看答案和解析>>

精英家教网如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两个端点为A、B.已知|
OB
|
|
F1B
|
|F1F2
|
成等比数列,|
F1B
|
-
|F1F2
|
=2,与x轴不垂直的直线l与C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1•k2=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)求证直线l与y轴相交于定点,并求出定点坐标.

查看答案和解析>>

一、选择题(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空题(4分x 4=16分)

13.80  14.32  15.  16.①③

三、解答题(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期为 …………………6分

(2)∵成等比数列   ∴  又

  ……………………………………4分

又∵     ∴       ……………………………………………………10分

  ……………………………………12分

18.解:(1)设公差成等比数列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

………………………………………………6分

(2) ∵               ………………………………………………7分

…①      …………8分

 …………②       …………9分

①-②得:

            

                ………………………………………………12分

19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,

                ……………………………………………………4分

(2)设符合题设条件,抽取次数恰为3的事件记为B,则

        ………………………………………………12分

20.解:(1)连结    为正△ …1分

                  

                                       3分

          

 

即点的位置在线段的四等分点且靠近处  ………………………………………6分

(2)过,连

由(1)知(三垂线定理)

为二面角的平面角……9分

   

   

中,

中,

∴二面角的大小为     ………………………………………12分

(说明:若用空间向量解,请参照给分)

21.解:(1) ……2分

①当时,内是增函数,故无最小值………………………3分

②当时,

 

 

 

 

处取得极小值    ………………………5分

   

由                     解得:  ∴ …………6分

(2)由(1)知在区间上均为增函数

,故要在为增函数

                  

必须:                或                    ………………………………………10分

                 

  ∴实数的取值范围是:…………………12分

22.解:(1)如图,设为椭圆的下焦点,连结

…3分

  ∴ ………4分

的离心率为

 …………………………………………………………6分

(2)∵,∴抛物线方程为:设点

点处抛物线的切线斜率 ……………………………………………………8分

则切线方程为:……………………………………………………9分

又∵过点  ∴  ∴  ∴

代入椭圆方程得:    ……………………………………………………11分

  ………………13分

                  

当且仅当                 即           上式取等号

                    

∴此时椭圆的方程为:       ………………………………………………14分

 

 

 

 


同步练习册答案