题目列表(包括答案和解析)
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
已知数列1,1+2,2+3+4,3+4+5+6,……,则此数列的第8项的值为: 。
一、选择题(5分×12=60分)
B B D D C B B D D C A A
二、填空题(4分x 4=16分)
13.0.1
14.63
15.
16.①③
三、解答题(12分×5+14分=74分)
17.解:(1)
2分
……………………4分
∴
的最小正周期为
…………………6分(2)∵
成等比数列 ∴
∴
≥
………………………8分
∵
∴

≤
即
≤

∵
∴
≤
………………………………………………10分
18.解:(1)设
公差
由
成等比数列得
…………………1分
∴即
∴
舍去或
…………………………3分
∴
………………………………………………4分
又
………………………………………………5分
∴
………………………………………7分
(2)
………………………………………………8分
当
时,
………………………………………10分
当
时,
…………………………7分
19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,
……………………………………………………4分
(2)
可能值为
……………………………………………………………5分

…………………………10分
∴
…………………………12分
20.解:(1)连结
为正△
…1分



面
3分
面
面

即点
的位置在线段
的四等分点且靠近
处 ………………………………………6分(2)过
作
于
,连
由(1)知
面
(三垂线定理)
∴
为二面角
的平面角……9分


在
中,
在
中,
∴二面角
的大小为
………………………………………12分
(说明:若用空间向量解,请参照给分)
21.解:(1)设
,由
取
得

则
……………………2分
∴
…………………………12分
又∵
为定值,
则
………………5分
∵
为定值,∴
为定值。
(2)∵
,∴抛物线方程为:
设点
则
由(1)知
则
………………………………8分
又∵
过点
∴
∴
∴
………………………………9分
代入椭圆
方程得:
∴
≥
………………11分


当且仅当 即 上式取等号

∴此时椭圆的方程为:
………………………………………12分
22.解:(1)∵
∴
…1分
设
则
……2分
∴
在
上为减函数 又
时,
,∴
∴
在
上是减函数………4分(2)①∵
∴
或
时
∴
…………………………………6分
又≤
≤
对一切
恒成立
∴
≤
≤
……………8分
②显然当
或
时,不等式成立
…………………………9分
当
,原不等式等价于
≥
………10分
下面证明一个更强的不等式:
≥
…①
即
≥
……②亦即
≥
…………………………11分
由(1) 知
在
上是减函数 又
∴
……12分
∴不等式②成立,从而①成立 又

∴
>
综合上面∴
≤
≤
且
≤
≤
时,原不等式成立 ……………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com