16.给出下列命题: 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①若a,b∈R+,a≠b则a3+b3>a2b+ab2
②若a,b∈R+,a<b,则
a+m
b+m
a
b

③若a,b,c∈R+,则
bc
a
+
ac
b
+
ab
c
≥a+b+c

④若3x+y=1,则
1
x
+
1
y
≥4+2
3

其中正确命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

给出下列命题:
(1)存在实数x,使sinx+cosx=
3
2

(2)若α,β是第一象限角,且α>β,则cosα<cosβ;
(3)函数y=sin(
2
3
x+
π
2
)
是偶函数;
(4)函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是周期为
π
2
的偶函数.
(5)函数y=cos(x+
π
3
)
的图象是关于点(
π
6
,0)
成中心对称的图形
其中正确命题的序号是
 
 (把正确命题的序号都填上)

查看答案和解析>>

给出下列命题:
①|
a
-
b
|≤|
a
|-|
b
|;②
a
b
共线,
b
c
平,则
a
c
为平行向量;③
a
b
c
为相互不平行向量,则(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,则△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,则
a
⊥(
b
-
c
)   
其中错误的有
 

查看答案和解析>>

给出下列命题:
①存在实数α使sinα•cosα=1成立;
②存在实数α使sinα+cosα=
3
2
成立;
③函数y=sin(
2
-2x)
是偶函数;
x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴的方程;
⑤在△ABC中,若A>B,则sinA>sinB.
其中正确命题的序号是
 
(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

2、给出下列命题:
(1)直线a与平面α不平行,则a与平面α内的所有直线都不平行;
(2)直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;
(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;
(4)若直线a和b共面,直线b和c共面,则a和c共面.其中错误命题的个数为
3

查看答案和解析>>

一、选择题(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空题(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答题(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期为 …………………6分(2)∵成等比数列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)设公差成等比数列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

时,  ………………………………………10分

时,   …………………………7分

19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,

                ……………………………………………………4分

(2)可能值为        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)连结    为正△ …1分

                  

                                       3分

          

 

即点的位置在线段的四等分点且靠近处  ………………………………………6分(2)过,连

由(1)知(三垂线定理)

为二面角的平面角……9分

   

   

中,

中,

∴二面角的大小为     ………………………………………12分

(说明:若用空间向量解,请参照给分)

21.解:(1)设,由

 

……………………2分

…………………………12分

又∵为定值,        ………………5分

为定值,∴为定值。

(2)∵,∴抛物线方程为:设点

由(1)知         ………………………………8分

又∵过点  ∴  ∴  ∴………………………………9分

代入椭圆方程得:

  ………………11分

                  

当且仅当                 即           上式取等号

                    

∴此时椭圆的方程为:             ………………………………………12分

22.解:(1)∵  ∴…1分

    设   ……2分

上为减函数  又   

时,,∴上是减函数………4分(2)①∵

 ∴…………………………………6分

又≤对一切恒成立 ∴        ……………8分

②显然当时,不等式成立                 …………………………9分

,原不等式等价于 ………10分

下面证明一个更强的不等式:…①

……②亦即 …………………………11分

由(1) 知上是减函数   又  ∴……12分

∴不等式②成立,从而①成立  又

综合上面∴时,原不等式成立     ……………………………14分

 

 

 


同步练习册答案