.(1)从盒子中随机取出2张卡片.将卡片上的两个函数相加得一个新的函数.求所得函数是偶函数的概率, 查看更多

 

题目列表(包括答案和解析)

一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片.
(Ⅰ)若从盒子中有放回的取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率;
(Ⅱ)若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望.

查看答案和解析>>

一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.

查看答案和解析>>

(2012•淄博一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(I)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

查看答案和解析>>

一个盒子中有标号分别是1、2、3、4、5的五个大小形状完全相同的小球,现从盒子中随机摸球.
(1)从盒中依次摸两次球,每次摸1个,摸出的球不放回,若两次摸出球上的数字全是奇数或全是偶数为胜,则某人摸球两次取胜的概率是多大?
(2)从盒子中依次摸球,每次摸球1个,摸出的球不放回,当摸出记有奇数的球即停止摸球,否则继续摸球,求摸球次数X的分布列和期望.

查看答案和解析>>

盒子中有8只螺丝钉,其中仅有2只是坏的.现从盒子中随机地抽取4只,恰好有1只是坏的概率等于
 
.(用最简分数作答)

查看答案和解析>>

一、选择题(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空题(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答题(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期为 …………………6分(2)∵成等比数列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)设公差成等比数列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

时,  ………………………………………10分

时,   …………………………7分

19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,

                ……………………………………………………4分

(2)可能值为        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)连结    为正△ …1分

                  

                                       3分

          

 

即点的位置在线段的四等分点且靠近处  ………………………………………6分(2)过,连

由(1)知(三垂线定理)

为二面角的平面角……9分

   

   

中,

中,

∴二面角的大小为     ………………………………………12分

(说明:若用空间向量解,请参照给分)

21.解:(1)设,由

 

……………………2分

…………………………12分

又∵为定值,        ………………5分

为定值,∴为定值。

(2)∵,∴抛物线方程为:设点

由(1)知         ………………………………8分

又∵过点  ∴  ∴  ∴………………………………9分

代入椭圆方程得:

  ………………11分

                  

当且仅当                 即           上式取等号

                    

∴此时椭圆的方程为:             ………………………………………12分

22.解:(1)∵  ∴…1分

    设   ……2分

上为减函数  又   

时,,∴上是减函数………4分(2)①∵

 ∴…………………………………6分

又≤对一切恒成立 ∴        ……………8分

②显然当时,不等式成立                 …………………………9分

,原不等式等价于 ………10分

下面证明一个更强的不等式:…①

……②亦即 …………………………11分

由(1) 知上是减函数   又  ∴……12分

∴不等式②成立,从而①成立  又

综合上面∴时,原不等式成立     ……………………………14分

 

 

 


同步练习册答案