椭圆和抛物线在点处的切线分别为和.且斜 查看更多

 

题目列表(包括答案和解析)

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为y=
1
8
x2+b
,如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G处的切线经过椭圆的右焦点F1
(1)求点G和点F1的坐标(用b表示);
(2)求满足条件的椭圆方程和抛物线方程;
(3)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

已知中心在原点,焦点在坐标轴上的椭圆Ω,它的离心率为,一个焦点和抛物线y2=-4x的焦点重合,过直线l:x=4上一点M引椭圆Ω的两条切线,切点分别是A,B.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)若在椭圆上的点(x,y)处的椭圆的切线方程是.求证:直线AB恒过定点C;并出求定点C的坐标.
(Ⅲ)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

已知中心在原点,焦点在坐标轴上的椭圆Ω,它的离心率为,一个焦点和抛物线y2=-4x的焦点重合,过直线l:x=4上一点M引椭圆Ω的两条切线,切点分别是A,B.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)若在椭圆上的点(x,y)处的椭圆的切线方程是.求证:直线AB恒过定点C;并出求定点C的坐标.
(Ⅲ)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

已知中心在原点,焦点在坐标轴上的椭圆Ω,它的离心率为,一个焦点和抛物线y2=-4x的焦点重合,过直线l:x=4上一点M引椭圆Ω的两条切线,切点分别是A,B.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)若在椭圆上的点(x,y)处的椭圆的切线方程是.求证:直线AB恒过定点C;并出求定点C的坐标.
(Ⅲ)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为,一个焦点和抛物线的焦点重合,过直线上一点M引椭圆的两条切线,切点分别是A,B.

(Ⅰ)求椭圆的方程;

(Ⅱ)若在椭圆上的点处的椭圆的切线方程是. 求证:直线恒过定点;并出求定点的坐标.

(Ⅲ)是否存在实数,使得恒成立?(点为直线恒过的定点)若存在,求出的值;若不存在,请说明理由。

 

查看答案和解析>>

一、选择题(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空题(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答题(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期为 …………………6分(2)∵成等比数列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)设公差成等比数列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

时,  ………………………………………10分

时,   …………………………7分

19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,

                ……………………………………………………4分

(2)可能值为        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)连结    为正△ …1分

                  

                                       3分

          

 

即点的位置在线段的四等分点且靠近处  ………………………………………6分(2)过,连

由(1)知(三垂线定理)

为二面角的平面角……9分

   

   

中,

中,

∴二面角的大小为     ………………………………………12分

(说明:若用空间向量解,请参照给分)

21.解:(1)设,由

 

……………………2分

…………………………12分

又∵为定值,        ………………5分

为定值,∴为定值。

(2)∵,∴抛物线方程为:设点

由(1)知         ………………………………8分

又∵过点  ∴  ∴  ∴………………………………9分

代入椭圆方程得:

  ………………11分

                  

当且仅当                 即           上式取等号

                    

∴此时椭圆的方程为:             ………………………………………12分

22.解:(1)∵  ∴…1分

    设   ……2分

上为减函数  又   

时,,∴上是减函数………4分(2)①∵

 ∴…………………………………6分

又≤对一切恒成立 ∴        ……………8分

②显然当时,不等式成立                 …………………………9分

,原不等式等价于 ………10分

下面证明一个更强的不等式:…①

……②亦即 …………………………11分

由(1) 知上是减函数   又  ∴……12分

∴不等式②成立,从而①成立  又

综合上面∴时,原不等式成立     ……………………………14分

 

 

 


同步练习册答案