(Ⅲ)试求出一个倍角三角形的三条边的长.使这三条边长恰为三个连续的正整数. 已知二次函数y=ax2+bx+c. (Ⅰ)若a=2.c=-3.且二次函数的图象经过点.求b的值(Ⅱ)若a=2.b+c=-2.b>c.且二次函数的图象经过点.求证:b≥0,(Ⅲ)若a+b+c=0.a>b>c.且二次函数的图象经过点.试问自变量x=q+4时.二次函数y=ax2+bx+c所对应的函数值y是否大于0?并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
精英家教网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
精英家教网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.

(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.

(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>


同步练习册答案