题目列表(包括答案和解析)
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列
满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程
有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程
有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用
可求得
,进而求得
.
根据上述结论求下列问题:
(1)当
,
(
)时,求数列
的通项公式;
(2)当
,
(
)时,求数列
的通项公式;
(3)当
,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com