2580~90 90~10163 查看更多

 

题目列表(包括答案和解析)

某校500名学生参加一次测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),测试分数在70~80分数段的学生有    名.

分数段

60~70

70~80

80~90

90~100

频率

0.25

 

0.25

0.2

 

查看答案和解析>>

某校组织初三学生电脑技能竞赛,每班参加比赛的学生人数相同,竞赛成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.

(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为        

 

平均数(分)

中位数(分)

众数(分)

(1)班

         

90

90

(2)班

88

          

100

(2)请你将表格补充完整:

 

 

 

 

(3)试运用所学的统计知识,从二个不同角度评价初三(1)班和初三(2)班的成绩.

 

查看答案和解析>>

请尝试解决以下问题:

(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.

感悟解题方法,并完成下列填空:

将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,

 

 

由旋转可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

(2)运用(1)解答中所积累的经验和知识,完成下题:

如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.

 

 

(2)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD+CE=DE始终成立,请说明理由.

 

 

 

查看答案和解析>>

某中学七年级学生共450人,其中男生250人,女生200人。该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:

成绩

划记

频数

百分比

不及格

9

10%

及格

18

20%

良好

36

40%

优秀

27

30%

合计

90

90

100%

(1)请解释“随即抽取了50名男生和40名女生”的合理性;

(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;

(3)估计该校七年级学生体育测试成绩不合格的人数。

 

查看答案和解析>>

为了了解全区近6000名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)

分组(分)

40~50

50~60

60~70

70~80

80~90

90~100

频数

12

18

180

 

 

 

频率

 

 

 

 

0.16

0.04

 

 

 

 

 

 

 

根据上表信息,由此样本请你估计全区此次测试成绩在70~80分的人数大约是           

 

查看答案和解析>>


同步练习册答案