题目列表(包括答案和解析)
命题
方程
有两个不等的正实数根,
命题
方程
无实数根。若“
或
”为真命题,求
的取值范围。
【解析】本试题主要考查了命题的真值问题,以及二次方程根的综合运用。
解:“p或q”为真命题,则p为真命题,或q为真命题,或q和p都是真命题
当p为真命题时,则
,得
;
当q为真命题时,则![]()
当q和p都是真命题时,得![]()
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
有下列命题:
①已知a,b为实数,若a2-4b≥0,则x2+ax+b≤0有非空实数解集.
②当2m-1>0时,如果
>0,那么m>-4.
③若a,b是整数,则关于x的方程x2+ax+b=0有两整数根.
④若a、b都不是整数,则方程x2+ax+b=0无两整数根.
⑤当2m-1>0时,如果m≤-4,则
≤0.
⑥已知a,b为实数,若x2+ax+b≤0有非空实数解,则a2-4b≥0.
⑦若方程x2+ax+b=0没有两整数根,则a不是整数或b不是整数.
⑧已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0的解集为空集.
⑨当2m-1>0时,如果m>-4,则
>0.
用序号表示上述命题间的关系(例(1)与(9)互为逆否命题):其中(1)___________是互为逆命题;(2)___________互为否命题;(3)___________互为逆否命题
①已知a,b为实数,若a2-4b≥0,则x2+ax+b≤0有非空实数解集.
②当2m-1>0时,如果
>0,那么m>-4.
③若a,b是整数,则关于x的方程x2+ax+b=0有两整数根.
④若a、b都不是整数,则方程x2+ax+b=0无两整数根.
⑤当2m-1>0时,如果m≤-4,则
≤0.
⑥已知a,b为实数,若x2+ax+b≤0有非空实数解,则a2-4b≥0.
⑦若方程x2+ax+b=0没有两整数根,则a不是整数或b不是整数.
⑧已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0的解集为空集.
⑨当2m-1>0时,如果m>-4,则
>0.
用序号表示上述命题间的关系(例(1)与(9)互为逆否命题):其中(1)___________是互为逆命题;(2)___________互为否命题;(3)___________互为逆否命题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com