19.如图10.在锐角三角形ABC中.D为BC边的中点.F为AB边所在的直线上一点.连结CF交AD延长线于E.已知.问:(1)F点此时的位置, 查看更多

 

题目列表(包括答案和解析)

如图所示,某校计划将一块形状为锐角三角形△ABC的空地进行生态环境改造,已知△ABC的边长BC长120米,高AD长80米,学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分,其中矩形EFGH的一边EF在边BC上,其余两个顶点H、G分别在边AB、AC上,现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元,在矩形EFGH上兴建爱心鱼塘,每平方米投资4元.  
(1)当FG长为多少米时,种草的面积与种花的面积相等?  
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少?

查看答案和解析>>

如图,某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上新建爱心鱼池,每平方米投资4元.

(1)当FG长为多少米时,种草的面积与种花的面积相等?

(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少?

查看答案和解析>>

精英家教网“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
5
10
13
,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:S△ABC=3×3-
1
2
×3×1-
1
2
×2×1-
1
2
×3×2=
7
2

思维拓展:已知△ABC的边长分别为
5a
、2
2a
17a
(a>0)
,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

查看答案和解析>>

如图,在锐角三角形ABC中,BC=10,BC边上的高AM=6,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
精英家教网
(1)因为
 
,所以△ADE∽△ABC.
(2)如图1,当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(3)设DE=x,△ABC与正方形DEFG重叠部分的面积为y.
①如图2,当正方形DEFG在△ABC的内部时,求y关于x的函数关系式,写出x的取值范围;
②如图3,当正方形DEFG的一部分在△ABC的外部时,求y关于x的函数关系式,写出x的取值范围;
③当x为何值时,y有最大值,最大值是多少?

查看答案和解析>>

如图,在锐角三角形ABC中,BC=10,BC边上的高AM=6,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.

(1)因为________,所以△ADE∽△ABC.
(2)如图1,当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(3)设DE=x,△ABC与正方形DEFG重叠部分的面积为y.
①如图2,当正方形DEFG在△ABC的内部时,求y关于x的函数关系式,写出x的取值范围;
②如图3,当正方形DEFG的一部分在△ABC的外部时,求y关于x的函数关系式,写出x的取值范围;
③当x为何值时,y有最大值,最大值是多少?

查看答案和解析>>


同步练习册答案