(4)在抛物线上取两点J.K..连结OJ.JK.OK.使得角OKJ=60°.再以OK.OJ.JK分别作等边三角形OKL.OJM.OKN.请你求出经过M.N.L三点的抛 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=2x2,⊙O与抛物线交于A、B两点,AB两点所在的直线为l,⊙O的半径为2。
(1)当x>xB时,抛物线上存在一动点C,则随着C点的向上运动,三角形ABC面积不断增加,问三角形ABC面积每秒的增加量△S是什么?(友情提醒:C点的速度为v0·s-1);
(2)存在一点D在劣弧AB上运动(不与A、B重合)设D(h,k),问抛物线上是否存在点E使得三角形ABD与三角形ABE的面积相等?若存在,求出点E;若不存在,请说明理由;
(3)F(m,n)(m>0)是抛物线y=2x2上的点,OF⊥FG,G(a,0)(a>m),△OFG的面积为S,且S=4n4,n是不大于40的整数,求OF2的最小值;
(4)在抛物线上取两点J、K,xJ<0,xk>0,连接OJ、JK、OK,使得角OKJ=60°,再以OK、OJ、JK分别作等边三角形OKL、OJM、OKN,请你求出经过M、N、L三点的抛物线的解析式。

查看答案和解析>>

(2012•门头沟区一模)在平面直角坐标系中,二次函数y=x2+2x-3的图象与x轴交于A、B两点(点A在点B的左侧),交y轴于点E.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.一次函数y=-x+m的图象过点C,交y轴于D点.
(1)求点C、点F的坐标;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

在平面直角坐标系中,二次函数y=x2+2x-3的图象与x轴交于A、B两点(点A在点B的左侧),交y轴于点E.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.一次函数y=-x+m的图象过点C,交y轴于D点.
(1)求点C、点F的坐标;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

.在平面直角坐标系中,二次函数的图象与x轴交于AB两点(点A在点B的左侧),交y轴于点E. 点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行. 一次函数y=-xm的图象过点C,交y轴于D点.

(1)求点C、点F的坐标;

(2)点K为线段AB上一动点,过点Kx轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;

(3)在直线l上取点M,在抛物线上取点N,使以点ACMN为顶点的四边形是平行四边形,求点N的坐标.

 


查看答案和解析>>

在平面直角坐标系中,二次函数y=x2+2x-3的图象与x轴交于A、B两点(点A在点B的左侧),交y轴于点E.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.一次函数y=-x+m的图象过点C,交y轴于D点.
(1)求点C、点F的坐标;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>


同步练习册答案