26.已知内接于以为直径的.过点作的切线交的延长线于点.且. 查看更多

 

题目列表(包括答案和解析)

已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.
(1)当PA的长度为
2
2
时,∠PAB=60°;
(2)当PA的长度为
2
2
8
5
5
2
2
8
5
5
时,△PAD是等腰三角形;
(3)过点P作PE⊥PC交射线AB于E,延长BP交射线AD于F,试证明:AE=AF.

查看答案和解析>>

类比学习:
我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB就是圆周角,弧AB是∠APB所夹的弧.
类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,
新知探索:
图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=
25
25
°,
归纳总结:
(1)圆周角的度数等于它所夹的弧的度数的一半;
(2)圆外角的度数等于
所夹两弧的度数差的一半
所夹两弧的度数差的一半

新知应用:
直线y=-x+m与直线y=-
3
3
x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,
设∠APC=θ.
①求A点坐标;         ②求⊙E的直径;
③连接MN,求线段MN的长度(可用含θ的三角函数式表示).

查看答案和解析>>

阅读下列材料后回答问题:

在平面直角坐标系中,已知x轴上的两点A(X1,0),B(X2,0)的距离记作,如果是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离。

如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作,直线AN1与BM2交于Q点。

在Rt△ABQ中,,∵

由此得任意两点之间的距离公式:

如果某圆的圆心为(0,0),半径为r。设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到,即:,    整理得:。我们称此式为圆心在原点,半径为r的圆的方程。

(1)直接应用平面内两点间距离公式,求点 之间的距离;

(2)如果圆心在点P(2,3),半径为3,求此圆的方程。

(3)方程是否是圆的方程?如果是,求出圆心坐标与半径。

查看答案和解析>>

已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.
精英家教网(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明;
(3)利用图中已标明的字母,连接线段,找出至少5对相似三角形(不包含全等,不需要证明).(多写者给附加分,附加分不超过3分,计入总分,但总分不超过120分.)

查看答案和解析>>

已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明;
(3)利用图中已标明的字母,连接线段,找出至少5对相似三角形(不包含全等,不需要证明).

查看答案和解析>>


同步练习册答案