在矩形AGFE中.△AEF绕点A旋转得到△ABC.连结AC.AF和CF.得△ACF.请你猜想一下△ACF是一个什么三角形?证明你的猜想是正确的. 查看更多

 

题目列表(包括答案和解析)

(2013•太原二模)如图(1),点F是正方形ABCD的边AB上一点,以AF为边在正方形的外部作△AEF,使∠AFE=90°,AF=FE,点O是线段CE的中点,连接OB,OF,请探究线段OB,OF的数量关系和位置关系.
小颖的思路:延长FO交BC于点G,通过构造全等三角形解决.
(1)请按小颖的思路解决图(1)中的问题:
①证明:△EOF≌COG;
②直接写出OB,OF的位置关系为
OB⊥OF
OB⊥OF
,数量关系为
OB=OF
OB=OF

(2)将图(1)中的△AEF绕点A旋转,使AE落在对角线CA的延长线上,其余条件都不变,请写出此时OB,OF的数量关系和位置关系,并证明;
(3)将图(2)中的正方形变为菱形,其中∠ABC=60°,将等腰△AEF的顶角变为120°,其余条件都不变,此时线段OB,OF的位置关系为
OB⊥OF
OB⊥OF
OB
OF
=
3
3

查看答案和解析>>

如图所示,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是(  )

A.顺时针旋转90°     B.逆时针旋转90°C.顺时针旋转45°    D.逆时针旋转45°

查看答案和解析>>

如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
精英家教网

查看答案和解析>>

如图所示

1.正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90, 连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;

2.将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;

3.将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用表示出直线BE、DF形成的锐角.

 

查看答案和解析>>

如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.

查看答案和解析>>


同步练习册答案