题目列表(包括答案和解析)
(本题12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=
,直线y=经过点C,交y轴于点G,且∠AGO=30°。
![]()
(1)点C、D的坐标分别是C( ),D( );
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
(本题12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=
,直线y=
经过点C,交y轴于点G,且∠AGO=30°。![]()
(1)点C、D的坐标分别是C( ),D( );
(2)求顶点在直线y=
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存
在,请求出此时抛物线的解析式;若不存在,请说明理由。
(本题12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=
,直线y=
经过点C,交y轴于点G,且∠AGO=30°。
![]()
(1)点C、D的坐标分别是C( ),D( );
(2)求顶点在直线y=
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
(本题满分12分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限。
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com