题中的等量关系.解决如下问题:若.则 . 查看更多

 

题目列表(包括答案和解析)

香港的“公屋制度”,解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但尚未有一个城市真正的大规模尝试.重庆建设公共租赁住房,意在重点解决“夹心层”住房问题,力争城市保障性住房的“全覆盖”.经过认真调研,重庆市政府决定,计划10年内解决低收入人群的住房问题.在内地城市中首开了实施“公租房”制度,根据政府安排,前6年年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
1
6
x+5
,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=
1
4
x+5
,(x单位:年,7≤x≤10且x为整数);由于部分已修公租房设施老化需要维修更新,经测算,需要投入更新设备的资金p(单位:百万元)与年分x的数量关系满足p=30x-34,假设每年的公租房全部出租完,另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/㎡)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/㎡) 50 52 54 56 58
x(年) 1 2 3 4 5
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房所获利润最多,最多为多少百万元?
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第8年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年增加1.35a%,求a的值(结果保留整数)
(参考数据:
3828
=61.87
3829
=61.88
3830
=61.89

查看答案和解析>>

香港的“公屋制度”,解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但尚未有一个城市真正的大规模尝试.重庆建设公共租赁住房,意在重点解决“夹心层”住房问题,力争城市保障性住房的“全覆盖”.经过认真调研,重庆市政府决定,计划10年内解决低收入人群的住房问题.在内地城市中首开了实施“公租房”制度,根据政府安排,前6年年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是数学公式,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是数学公式,(x单位:年,7≤x≤10且x为整数);由于部分已修公租房设施老化需要维修更新,经测算,需要投入更新设备的资金p(单位:百万元)与年分x的数量关系满足p=30x-34,假设每年的公租房全部出租完,另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/㎡)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/㎡)5052545658
x(年)12345
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房所获利润最多,最多为多少百万元?
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第8年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年增加1.35a%,求a的值(结果保留整数)
(参考数据:数学公式数学公式数学公式

查看答案和解析>>

感受理解
如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是
EF=FD
EF=FD

自主学习
事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路
如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等
学以致用
参考上述学到的知识,解答下列问题:
如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.

查看答案和解析>>

感受理解
如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是________
自主学习
事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路
如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等
学以致用
参考上述学到的知识,解答下列问题:
如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.

查看答案和解析>>

如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80km.请你根据图象回答或解决下列问题:

(1)谁出发得较早?早多长时间?谁到达乙地较早?早多长时间?

(2)两人在途中行驶的速度分别是多少?

(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式;(不要求写出自变量的取值范围)(因为学生还未学习二元一次方程组解法,所以本题对学生要求较高,但可以通过图象分析出速度,再根据路程与时间的关系列出函数关系式,以下一些类型题可同理解答);

(4)指出在什么时间段内两车均行驶在途中(不包括端点)、在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要求化简,也不要求求解):

①自行车行驶在摩托车前面;

②自行车与摩托车相遇;

③自行车行驶在摩托车后面.

查看答案和解析>>


同步练习册答案