9.以下长度的三条线段不能构成三角形的是 ( )A.1cm.2cm.3cm B.2cm.3cm.4cm C.3cm.4cm.5cm D.2006cm.2007cm.2008cm 查看更多

 

题目列表(包括答案和解析)

互不相等的三个正数a、b、c恰为一个三角形的三条边长,则以下列三数为长度的线段一定能构成三角形的是(  )
A、
1
a
1
b
1
c
B、a2,b2,c2
C、
a
b
c
D、|a-b|,|b-c|,|c-a|

查看答案和解析>>

互不相等的三个正数a、b、c恰为一个三角形的三条边长,则以下列三数为长度的线段一定能构成三角形的是


  1. A.
    数学公式
  2. B.
    a2,b2,c2
  3. C.
    数学公式
  4. D.
    |a-b|,|b-c|,|c-a|

查看答案和解析>>

如图是瑞典人科赫(Koch)在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为a,则可算出下图每步变换后科赫雪花的周长:C1=3a,C2=
 
,C3=
 
,…,则Cn=
 

精英家教网

查看答案和解析>>

如图是瑞典人科赫(Koch)在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为a,则可算出下图每步变换后科赫雪花的周长:C1=3a,C2=    ,C3=    ,…,则Cn=   

查看答案和解析>>

如图是瑞典人科赫(Koch)在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为a,则可算出下图每步变换后科赫雪花的周长:C1=3a,C2=    ,C3=    ,…,则Cn=   

查看答案和解析>>


同步练习册答案