19.如图所示.将四边形绕点按逆时针方向旋转.使与重合.作出旋转后的四边形. 查看更多

 

题目列表(包括答案和解析)

如图①所示,将一个正三角形纸片沿着它的一条边上的高剪开,得到如图②所示的两个全等的Rt△ABC、Rt△DEF.
精英家教网
(1)根据正三角形的性质可知:在图②中,∠ABC=∠DEF=30°,AB=DE=2AC=2DF.由此请你归纳一下在含30°角的直角三角形中,30°角所对的直角边与斜边之间的关系:
在含30°角的直角三角形中,30°角所对的直角边
 

(2)将这两个直角三角形纸片按如图③放置,使点B、D重合,点F在BC上.固定纸片DEF,将△ABC绕点F逆时针旋转角α(0°<α<90°),使四边形ACDE为以ED为底的梯形(如图④所示),求此时α的值;
(3)猜想图④中AE与CD之间的大小关系,并说明理由.

查看答案和解析>>

如图①所示,将一个正三角形纸片沿着它的一条边上的高剪开,得到如图②所示的两个全等的Rt△ABC、Rt△DEF.

(1)根据正三角形的性质可知:在图②中,∠ABC=∠DEF=30°,AB=DE=2AC=2DF.由此请你归纳一下在含30°角的直角三角形中,30°角所对的直角边与斜边之间的关系:
在含30°角的直角三角形中,30°角所对的直角边________;
(2)将这两个直角三角形纸片按如图③放置,使点B、D重合,点F在BC上.固定纸片DEF,将△ABC绕点F逆时针旋转角α(0°<α<90°),使四边形ACDE为以ED为底的梯形(如图④所示),求此时α的值;
(3)猜想图④中AE与CD之间的大小关系,并说明理由.

查看答案和解析>>

如图①所示,将一个正三角形纸片沿着它的一条边上的高剪开,得到如图②所示的两个全等的Rt△ABC、Rt△DEF

(1)根据正三角形的性质可知:在图②中,∠ABC=∠DEF=30°,ABDE=2AC=2DF.由此请你归纳一下在含30°角的直角三角形中,30°角所对的直角边与斜边之间的关系:

在含30°角的直角三角形中,30°角所对的直角边________

(2)将这两个直角三角形纸片按如图③放置,使点BD重合,点FBC上.固定纸片DEF,将△ABC绕点F逆时针旋转角α(0°<α<90°),使四边形ACDE为以ED为底的梯形(如图④所示),求此时α的值;

(3)猜想图④中AECD之间的大小关系,并说明理由.

查看答案和解析>>

24、如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.
(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为
相等
,位置关系为
垂直
(不需要证明).
(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.
(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.

查看答案和解析>>

如图所示,在平面直角坐标系xoy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2精英家教网,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.
(1)求这条抛物线的解析式;
(2)连接DB,P是线段BC上一动点(P不与B、C重合),过点P作PE∥BD交CD于E,则当△DEP面积最大时,求PE的解析式;
(3)作点D关于此抛物线对称轴的对称点F,连接CF交对称轴于点M,抛物线上一动点R,x轴上一动点Q,则在抛物线上是否存在点R,x轴上是否存在点Q,使得以C、M、Q、R为顶点的四边形是平行四边形?如果存在,求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案